These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23589242)

  • 1. Response of the lichen Cladonia rei Schaer. to strong heavy metal contamination of the substrate.
    Osyczka P; Rola K
    Environ Sci Pollut Res Int; 2013 Jul; 20(7):5076-84. PubMed ID: 23589242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrity of lichen cell membranes as an indicator of heavy-metal pollution levels in soil.
    Osyczka P; Rola K
    Ecotoxicol Environ Saf; 2019 Jun; 174():26-34. PubMed ID: 30818257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy-metal tolerance of photobiont in pioneer lichens inhabiting heavily polluted sites.
    Rola K; Latkowska E; Myśliwa-Kurdziel B; Osyczka P
    Sci Total Environ; 2019 Aug; 679():260-269. PubMed ID: 31082599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oribatid mite communities on lichens in heavily contaminated post-smelting dumps.
    Skubała P; Rola K; Osyczka P; Kafel A
    Arch Environ Contam Toxicol; 2014 Nov; 67(4):578-92. PubMed ID: 25034334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modifications in the structure of the lichen Cladonia thallus in the aftermath of habitat contamination and implications for its heavy-metal accumulation capacity.
    Osyczka P; Boroń P; Lenart-Boroń A; Rola K
    Environ Sci Pollut Res Int; 2018 Jan; 25(2):1950-1961. PubMed ID: 29105035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight into the pattern of heavy-metal accumulation in lichen thalli.
    Rola K
    J Trace Elem Med Biol; 2020 Apr; 61():126512. PubMed ID: 32299012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different Heavy Metal Accumulation Strategies of Epilithic Lichens Colonising Artificial Post-Smelting Wastes.
    Rola K; Osyczka P; Kafel A
    Arch Environ Contam Toxicol; 2016 Feb; 70(2):418-28. PubMed ID: 26155778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-term influence of Cu, Zn, Ni and Cd excess on metabolism, ultrastructure and distribution of elements in lichen Xanthoria parietina (L.) Th. Fr.
    Piovár J; Weidinger M; Bačkor M; Bačkorová M; Lichtscheidl I
    Ecotoxicol Environ Saf; 2017 Nov; 145():408-419. PubMed ID: 28763757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oribatid communities and heavy metal bioaccumulation in selected species associated with lichens in a heavily contaminated habitat.
    Skubała P; Rola K; Osyczka P
    Environ Sci Pollut Res Int; 2016 May; 23(9):8861-71. PubMed ID: 26810668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards understanding the effect of heavy metals on mycobiont physiological condition in a widespread metal-tolerant lichen Cladonia rei.
    Rola K; Latkowska E; Ogar W; Osyczka P
    Chemosphere; 2022 Dec; 308(Pt 2):136365. PubMed ID: 36087724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of urban air pollutants on the performance of heavy metal accumulation in Usnea amblyoclada.
    Carreras HA; Wannaz ED; Perez CA; Pignata ML
    Environ Res; 2005 Jan; 97(1):50-7. PubMed ID: 15476733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lichen-forming fungi in postindustrial habitats involve alternative photobionts.
    Osyczka P; Lenart-Boroń A; Boroń P; Rola K
    Mycologia; 2021; 113(1):43-55. PubMed ID: 33146594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation and toxic effect of arsenic and other heavy metals in a contaminated area of West Bengal, India, in the lichen Pyxine cocoes (Sw.) Nyl.
    Bajpai R; Upreti DK
    Ecotoxicol Environ Saf; 2012 Sep; 83():63-70. PubMed ID: 22762786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy element accumulation in Evernia prunastri lichen transplants around a municipal solid waste landfill in central Italy.
    Nannoni F; Santolini R; Protano G
    Waste Manag; 2015 Sep; 43():353-62. PubMed ID: 26116005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of secondary metabolites to Cu in the Cu-hyperaccumulator lichen Stereocaulon japonicum.
    Nakajima H; Fujimoto N; Yamamoto Y; Amemiya T; Itoh K
    Environ Sci Pollut Res Int; 2019 Jan; 26(1):905-912. PubMed ID: 30417238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic processes involved with sugar alcohol and secondary metabolite production in the hyperaccumulator lichen Diploschistes muscorum reveal its complex adaptation strategy against heavy-metal stress.
    Osyczka P; Latkowska E; Rola K
    Fungal Biol; 2021 Dec; 125(12):999-1008. PubMed ID: 34776237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemistry of the lichen Hypogymnia physodes transplanted to an industrial region.
    Białońska D; Dayan FE
    J Chem Ecol; 2005 Dec; 31(12):2975-91. PubMed ID: 16365718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative variations of usnic acid and selected elements in terricolous lichen Cladonia mitis Sandst., with respect to different environmental factors - A chemometric approach.
    Galanty A; Węgrzyn M; Wietrzyk-Pełka P; Fołta M; Krośniak M; Podolak I; Zagrodzki P
    Phytochemistry; 2021 Dec; 192():112948. PubMed ID: 34530281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of atmospheric heavy metal pollution in Canakkale and Balikesir provinces using lichen (Cladonia rangiformis) as a bioindicator.
    Cayir A; Coskun M; Coskun M
    Bull Environ Contam Toxicol; 2007 Oct; 79(4):367-70. PubMed ID: 17639314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological and chemical response of lichens transplanted in and around an industrial area of south Italy: relationship with the lichen diversity.
    Paoli L; Pisani T; Guttová A; Sardella G; Loppi S
    Ecotoxicol Environ Saf; 2011 May; 74(4):650-7. PubMed ID: 21251715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.