These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 23589268)

  • 1. The linear accumulation of atmospheric mercury by vegetable and grass leaves: Potential biomonitors for atmospheric mercury pollution.
    Niu Z; Zhang X; Wang S; Ci Z; Kong X; Wang Z
    Environ Sci Pollut Res Int; 2013 Sep; 20(9):6337-43. PubMed ID: 23589268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field controlled experiments of mercury accumulation in crops from air and soil.
    Niu Z; Zhang X; Wang Z; Ci Z
    Environ Pollut; 2011 Oct; 159(10):2684-9. PubMed ID: 21723013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influences of high-level atmospheric gaseous elemental mercury on methylmercury accumulation in maize (Zea mays L.).
    Sun T; Wang Z; Zhang X; Niu Z; Chen J
    Environ Pollut; 2020 Oct; 265(Pt B):114890. PubMed ID: 32544787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mercury accumulation in grass and forb species as a function of atmospheric carbon dioxide concentrations and mercury exposures in air and soil.
    Millhollen AG; Obrist D; Gustin MS
    Chemosphere; 2006 Oct; 65(5):889-97. PubMed ID: 16631233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of leafy vegetables as bioindicators of gaseous mercury pollution in sewage-irrigated areas.
    Zheng SA; Wu Z; Chen C; Liang J; Huang H; Zheng X
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):413-421. PubMed ID: 29043585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field controlled experiments on the physiological responses of maize (Zea mays L.) leaves to low-level air and soil mercury exposures.
    Niu Z; Zhang X; Wang S; Zeng M; Wang Z; Zhang Y; Ci Z
    Environ Sci Pollut Res Int; 2014 Jan; 21(2):1541-7. PubMed ID: 23943002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Concentrations of mercury in ambient air in wastewater irrigated area of Tianjin City and its accumulation in leafy vegetables].
    Zheng SA; Han YL; Zheng XQ
    Huan Jing Ke Xue; 2014 Nov; 35(11):4338-44. PubMed ID: 25639114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Open-top Chamber for in situ Research on Response of Mercury Enrichment in Rice to the Rising Gaseous Elemental Mercury in the Atmosphere].
    Chen J; Wang ZW; Zhang XS; Qin PF; Lu HJ
    Huan Jing Ke Xue; 2015 Aug; 36(8):2997-3003. PubMed ID: 26592032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of concentrations of mercury in ambient air to its accumulation by leafy vegetables: an important step in terrestrial food chain analysis.
    De Temmerman L; Waegeneers N; Claeys N; Roekens E
    Environ Pollut; 2009 Apr; 157(4):1337-41. PubMed ID: 19118931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Contribution to vegetable mercury from atmosphere and soil].
    Liu D; Qing C
    Ying Yong Sheng Tai Xue Bao; 2002 Mar; 13(3):315-8. PubMed ID: 12132161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytotoxicity of three plant-based biodiesels, unmodified castor oil, and Diesel fuel to alfalfa (Medicago sativa L.), lettuce (Lactuca sativa L.), radish (Raphanus sativus), and wheatgrass (Triticum aestivum).
    Bamgbose I; Anderson TA
    Ecotoxicol Environ Saf; 2015 Dec; 122():268-74. PubMed ID: 26283287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atmospheric mercury exchange with a tallgrass prairie ecosystem housed in mesocosms.
    Stamenkovic J; Gustin MS; Arnone JA; Johnson DW; Larsen JD; Verburg PS
    Sci Total Environ; 2008 Nov; 406(1-2):227-38. PubMed ID: 18775555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Foliar exchange of mercury as a function of soil and air mercury concentrations.
    Ericksen JA; Gustin MS
    Sci Total Environ; 2004 May; 324(1-3):271-9. PubMed ID: 15081712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury accumulation response of rice plant (Oryza sativa L.) to elevated atmospheric mercury and carbon dioxide.
    Tang B; Chen J; Wang Z; Qin P; Zhang X
    Ecotoxicol Environ Saf; 2021 Aug; 224():112628. PubMed ID: 34418855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conventional and novel techniques for the determination of Hg uptake by lettuce in amended agricultural peri-urban soils.
    Turull M; Fontàs C; Díez S
    Sci Total Environ; 2019 Jun; 668():40-46. PubMed ID: 30851683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mercury uptake into poplar leaves.
    Assad M; Parelle J; Cazaux D; Gimbert F; Chalot M; Tatin-Froux F
    Chemosphere; 2016 Mar; 146():1-7. PubMed ID: 26694893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soil mercury and its response to atmospheric mercury deposition across the northeastern United States.
    Yu X; Driscoll CT; Warby RA; Montesdeoca M; Johnson CE
    Ecol Appl; 2014 Jun; 24(4):812-22. PubMed ID: 24988778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercury distribution in the soil-plant-air system at the Wanshan mercury mining district in Guizhou, Southwest China.
    Wang J; Feng X; Anderson CW; Zhu W; Yin R; Wang H
    Environ Toxicol Chem; 2011 Dec; 30(12):2725-31. PubMed ID: 21935979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating uptake and translocation of mercury species by sawgrass ( Cladium jamaicense ) using a stable isotope tracer technique.
    Mao Y; Li Y; Richards J; Cai Y
    Environ Sci Technol; 2013 Sep; 47(17):9678-84. PubMed ID: 23885899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of soil cadmium on growth, photosynthesis and quality of Raphanus sativus and Lactuca sativa.
    Kaur N; Jhanji S
    J Environ Biol; 2016 Sep; 37(5):993-7. PubMed ID: 29251899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.