BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 23589328)

  • 21. Apoptotic cleavage of NuMA at the C-terminal end is related to nuclear disruption and death amplification.
    Lin HH; Hsu HL; Yeh NH
    J Biomed Sci; 2007 Sep; 14(5):681-94. PubMed ID: 17401638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The p53-p21WAF1 checkpoint pathway plays a protective role in preventing DNA rereplication induced by abrogation of FOXF1 function.
    Lo PK; Lee JS; Sukumar S
    Cell Signal; 2012 Jan; 24(1):316-24. PubMed ID: 21964066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ku80 functions as a tumor suppressor in hepatocellular carcinoma by inducing S-phase arrest through a p53-dependent pathway.
    Wei S; Xiong M; Zhan DQ; Liang BY; Wang YY; Gutmann DH; Huang ZY; Chen XP
    Carcinogenesis; 2012 Mar; 33(3):538-47. PubMed ID: 22226916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NuMA phosphorylation by CDK1 couples mitotic progression with cortical dynein function.
    Kotak S; Busso C; Gönczy P
    EMBO J; 2013 Sep; 32(18):2517-29. PubMed ID: 23921553
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for dynein and astral microtubule-mediated cortical release and transport of Gαi/LGN/NuMA complex in mitotic cells.
    Zheng Z; Wan Q; Liu J; Zhu H; Chu X; Du Q
    Mol Biol Cell; 2013 Apr; 24(7):901-13. PubMed ID: 23389635
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nuclear mitotic apparatus protein, NuMA, modulates p53-mediated transcription in cancer cells.
    Endo A; Moyori A; Kobayashi A; Wong RW
    Cell Death Dis; 2013 Jul; 4(7):e713. PubMed ID: 23828576
    [No Abstract]   [Full Text] [Related]  

  • 27. Revelation of p53-independent function of MTA1 in DNA damage response via modulation of the p21 WAF1-proliferating cell nuclear antigen pathway.
    Li DQ; Pakala SB; Reddy SDN; Ohshiro K; Peng SH; Lian Y; Fu SW; Kumar R
    J Biol Chem; 2010 Mar; 285(13):10044-10052. PubMed ID: 20071335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A nonerythroid isoform of protein 4.1R interacts with the nuclear mitotic apparatus (NuMA) protein.
    Mattagajasingh SN; Huang SC; Hartenstein JS; Snyder M; Marchesi VT; Benz EJ
    J Cell Biol; 1999 Apr; 145(1):29-43. PubMed ID: 10189366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human papillomavirus E7 protein deregulates mitosis via an association with nuclear mitotic apparatus protein 1.
    Nguyen CL; Münger K
    J Virol; 2009 Feb; 83(4):1700-7. PubMed ID: 19052088
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alterations in gene expression and sensitivity to genotoxic stress following HdmX or Hdm2 knockdown in human tumor cells harboring wild-type p53.
    Heminger K; Markey M; Mpagi M; Berberich SJ
    Aging (Albany NY); 2009 Jan; 1(1):89-108. PubMed ID: 19946469
    [TBL] [Abstract][Full Text] [Related]  

  • 31. c-ABL tyrosine kinase modulates p53-dependent p21 induction and ensuing cell fate decision in response to DNA damage.
    Udden SM; Morita-Fujimura Y; Satake M; Ikawa S
    Cell Signal; 2014 Feb; 26(2):444-52. PubMed ID: 24177958
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CDK8 is a stimulus-specific positive coregulator of p53 target genes.
    Donner AJ; Szostek S; Hoover JM; Espinosa JM
    Mol Cell; 2007 Jul; 27(1):121-33. PubMed ID: 17612495
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation.
    Kiyomitsu T; Cheeseman IM
    Nat Cell Biol; 2012 Feb; 14(3):311-7. PubMed ID: 22327364
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Suppression of Polo like kinase 1 (PLK1) by p21(Waf1) mediates the p53-dependent prevention of caspase-independent mitotic death.
    Lin YC; Sun SH; Wang FF
    Cell Signal; 2011 Nov; 23(11):1816-23. PubMed ID: 21726628
    [TBL] [Abstract][Full Text] [Related]  

  • 35. IGFBP-rP1 induces p21 expression through a p53-independent pathway, leading to cellular senescence of MCF-7 breast cancer cells.
    Zuo S; Liu C; Wang J; Wang F; Xu W; Cui S; Yuan L; Chen X; Fan W; Cui M; Song G
    J Cancer Res Clin Oncol; 2012 Jun; 138(6):1045-55. PubMed ID: 22392074
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The spindle function of CDCA4.
    Wang L; Zhu G; Yang D; Li Q; Li Y; Xu X; He D; Zeng C
    Cell Motil Cytoskeleton; 2008 Jul; 65(7):581-93. PubMed ID: 18498124
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exclusive modifications of NuMA in malignant epithelial cells: A potential therapeutic mechanism.
    Cohen-Armon M
    Drug Discov Today; 2022 May; 27(5):1205-1209. PubMed ID: 35143964
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic changes in NuMA and microtubules in monkey-rabbit nuclear transfer embryos.
    Yan LY; Shi LH; Sheng HZ; Liu SZ; Huang JC; Zhu ZY; OuYang YC; Lei ZL; Song XF; Sun QY; Chen DY
    Front Biosci; 2006 May; 11():1892-900. PubMed ID: 16368565
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cytokinesis arrest and multiple centrosomes in B cell chronic lymphocytic leukaemia.
    Rogne M; Svaerd O; Madsen-Østerbye J; Hashim A; Tjønnfjord GE; Staerk J
    J Cell Mol Med; 2018 May; 22(5):2846-2855. PubMed ID: 29516674
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immunolocalization of NuMA and phosphorylated proteins during the cell cycle in human breast and prostate cancer cells as analyzed by immunofluorescence and postembedding immunoelectron microscopy.
    Gobert GN; Hueser CN; Curran EM; Sun QY; Glinsky VV; Welshons WV; Eisenstark A; Schatten H
    Histochem Cell Biol; 2001 May; 115(5):381-95. PubMed ID: 11449886
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.