These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
405 related articles for article (PubMed ID: 23589329)
21. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Ichimura Y; Waguri S; Sou YS; Kageyama S; Hasegawa J; Ishimura R; Saito T; Yang Y; Kouno T; Fukutomi T; Hoshii T; Hirao A; Takagi K; Mizushima T; Motohashi H; Lee MS; Yoshimori T; Tanaka K; Yamamoto M; Komatsu M Mol Cell; 2013 Sep; 51(5):618-31. PubMed ID: 24011591 [TBL] [Abstract][Full Text] [Related]
22. Crosstalk between autophagy and the Keap1-Nrf2-ARE pathway regulates realgar-induced neurotoxicity. Zhang W; Geng X; Dong Q; Li X; Ye P; Lin M; Xu B; Jiang H J Ethnopharmacol; 2023 Jan; 301():115776. PubMed ID: 36191662 [TBL] [Abstract][Full Text] [Related]
23. Activation of Nrf2 by arsenite and monomethylarsonous acid is independent of Keap1-C151: enhanced Keap1-Cul3 interaction. Wang XJ; Sun Z; Chen W; Li Y; Villeneuve NF; Zhang DD Toxicol Appl Pharmacol; 2008 Aug; 230(3):383-9. PubMed ID: 18417180 [TBL] [Abstract][Full Text] [Related]
24. Fenofibrate activates Nrf2 through p62-dependent Keap1 degradation. Park JS; Kang DH; Lee DH; Bae SH Biochem Biophys Res Commun; 2015 Sep; 465(3):542-7. PubMed ID: 26282199 [TBL] [Abstract][Full Text] [Related]
25. Validation of the multiple sensor mechanism of the Keap1-Nrf2 system. Takaya K; Suzuki T; Motohashi H; Onodera K; Satomi S; Kensler TW; Yamamoto M Free Radic Biol Med; 2012 Aug; 53(4):817-27. PubMed ID: 22732183 [TBL] [Abstract][Full Text] [Related]
26. Oxidative stress induced by realgar in neurons: p38 MAPK and ERK1/2 perturb autophagy and induce the p62-Keap1-Nrf2 feedback loop to activate the Nrf2 signalling pathway. Meng Y; Feng R; Yang Z; Liu T; Huo T; Jiang H J Ethnopharmacol; 2022 Jan; 282():114582. PubMed ID: 34492322 [TBL] [Abstract][Full Text] [Related]
27. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Zhang DD; Hannink M Mol Cell Biol; 2003 Nov; 23(22):8137-51. PubMed ID: 14585973 [TBL] [Abstract][Full Text] [Related]
28. Activation of KEAP1/NRF2/P62 signaling alleviates high phosphate-induced calcification of vascular smooth muscle cells by suppressing reactive oxygen species production. Wei R; Enaka M; Muragaki Y Sci Rep; 2019 Jul; 9(1):10366. PubMed ID: 31316111 [TBL] [Abstract][Full Text] [Related]
29. Proteasome dysfunction activates autophagy and the Keap1-Nrf2 pathway. Kageyama S; Sou YS; Uemura T; Kametaka S; Saito T; Ishimura R; Kouno T; Bedford L; Mayer RJ; Lee MS; Yamamoto M; Waguri S; Tanaka K; Komatsu M J Biol Chem; 2014 Sep; 289(36):24944-55. PubMed ID: 25049227 [TBL] [Abstract][Full Text] [Related]
30. DC32, a Dihydroartemisinin Derivative, Ameliorates Collagen-Induced Arthritis Through an Nrf2-p62-Keap1 Feedback Loop. Fan M; Li Y; Yao C; Liu X; Liu J; Yu B Front Immunol; 2018; 9():2762. PubMed ID: 30538709 [TBL] [Abstract][Full Text] [Related]
31. The Keap1-Nrf2 system as an in vivo sensor for electrophiles. Uruno A; Motohashi H Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624 [TBL] [Abstract][Full Text] [Related]
32. Nrf2 protects human bladder urothelial cells from arsenite and monomethylarsonous acid toxicity. Wang XJ; Sun Z; Chen W; Eblin KE; Gandolfi JA; Zhang DD Toxicol Appl Pharmacol; 2007 Dec; 225(2):206-13. PubMed ID: 17765279 [TBL] [Abstract][Full Text] [Related]
33. Keap1-Nrf2 activation in the presence and absence of DJ-1. Gan L; Johnson DA; Johnson JA Eur J Neurosci; 2010 Mar; 31(6):967-77. PubMed ID: 20377612 [TBL] [Abstract][Full Text] [Related]
34. Genetic versus chemoprotective activation of Nrf2 signaling: overlapping yet distinct gene expression profiles between Keap1 knockout and triterpenoid-treated mice. Yates MS; Tran QT; Dolan PM; Osburn WO; Shin S; McCulloch CC; Silkworth JB; Taguchi K; Yamamoto M; Williams CR; Liby KT; Sporn MB; Sutter TR; Kensler TW Carcinogenesis; 2009 Jun; 30(6):1024-31. PubMed ID: 19386581 [TBL] [Abstract][Full Text] [Related]
35. Regulation of Cigarette Smoke (CS)-Induced Autophagy by Nrf2. Zhu L; Barrett EC; Xu Y; Liu Z; Manoharan A; Chen Y PLoS One; 2013; 8(4):e55695. PubMed ID: 23585825 [TBL] [Abstract][Full Text] [Related]
36. Participation of covalent modification of Keap1 in the activation of Nrf2 by tert-butylbenzoquinone, an electrophilic metabolite of butylated hydroxyanisole. Abiko Y; Miura T; Phuc BH; Shinkai Y; Kumagai Y Toxicol Appl Pharmacol; 2011 Aug; 255(1):32-9. PubMed ID: 21651925 [TBL] [Abstract][Full Text] [Related]
37. Molecular cross-talk between the NRF2/KEAP1 signaling pathway, autophagy, and apoptosis. Stępkowski TM; Kruszewski MK Free Radic Biol Med; 2011 May; 50(9):1186-95. PubMed ID: 21295136 [TBL] [Abstract][Full Text] [Related]
38. Activation of the Keap1/Nrf2 stress response pathway in autophagic vacuolar myopathies. Duleh S; Wang X; Komirenko A; Margeta M Acta Neuropathol Commun; 2016 Oct; 4(1):115. PubMed ID: 27799074 [TBL] [Abstract][Full Text] [Related]
39. Deletion of Keap1 in the lung attenuates acute cigarette smoke-induced oxidative stress and inflammation. Blake DJ; Singh A; Kombairaju P; Malhotra D; Mariani TJ; Tuder RM; Gabrielson E; Biswal S Am J Respir Cell Mol Biol; 2010 May; 42(5):524-36. PubMed ID: 19520915 [TBL] [Abstract][Full Text] [Related]
40. NRF2 cysteine residues are critical for oxidant/electrophile-sensing, Kelch-like ECH-associated protein-1-dependent ubiquitination-proteasomal degradation, and transcription activation. He X; Ma Q Mol Pharmacol; 2009 Dec; 76(6):1265-78. PubMed ID: 19786557 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]