BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 23589356)

  • 1. Development of in vivo impedance spectroscopy techniques for measurement of micropore formation following microneedle insertion.
    Brogden NK; Ghosh P; Hardi L; Crofford LJ; Stinchcomb AL
    J Pharm Sci; 2013 Jun; 102(6):1948-1956. PubMed ID: 23589356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of impedance spectroscopy techniques for measuring cutaneous micropore formation after microneedle treatment in an elderly population.
    Kelchen MN; Holdren GO; Farley MJ; Zimmerman MB; Fairley JA; Brogden NK
    Pharm Res; 2014 Dec; 31(12):3478-86. PubMed ID: 24947437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micropore closure kinetics are delayed following microneedle insertion in elderly subjects.
    Kelchen MN; Siefers KJ; Converse CC; Farley MJ; Holdren GO; Brogden NK
    J Control Release; 2016 Mar; 225():294-300. PubMed ID: 26829102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micropore closure time is longer following microneedle application to skin of color.
    Ogunjimi AT; Carr J; Lawson C; Ferguson N; Brogden NK
    Sci Rep; 2020 Nov; 10(1):18963. PubMed ID: 33144596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diclofenac enables unprecedented week-long microneedle-enhanced delivery of a skin impermeable medication in humans.
    Brogden NK; Banks SL; Crofford LJ; Stinchcomb AL
    Pharm Res; 2013 Aug; 30(8):1947-55. PubMed ID: 23761054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diclofenac delays micropore closure following microneedle treatment in human subjects.
    Brogden NK; Milewski M; Ghosh P; Hardi L; Crofford LJ; Stinchcomb AL
    J Control Release; 2012 Oct; 163(2):220-9. PubMed ID: 22929967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluvastatin as a micropore lifetime enhancer for sustained delivery across microneedle-treated skin.
    Ghosh P; Brogden NK; Stinchcomb AL
    J Pharm Sci; 2014 Feb; 103(2):652-60. PubMed ID: 24395718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micropore Closure Rates following Microneedle Application at Various Anatomical Sites in Healthy Human Subjects.
    Ogunjimi AT; Lawson C; Carr J; Patel KK; Ferguson N; Brogden NK
    Skin Pharmacol Physiol; 2021; 34(4):214-228. PubMed ID: 33910205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Formulation and Microneedle Length on Transdermal Metronidazole Permeation through Microneedle-Treated Skin.
    Patel KK; Brogden NK
    Pharm Res; 2024 Feb; 41(2):355-363. PubMed ID: 38133717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new paradigm for numerical simulation of microneedle-based drug delivery aided by histology of microneedle-pierced skin.
    Han T; Das DB
    J Pharm Sci; 2015 Jun; 104(6):1993-2007. PubMed ID: 25821048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a codrug approach for sustained drug delivery across microneedle-treated skin.
    Ghosh P; Pinninti RR; Hammell DC; Paudel KS; Stinchcomb AL
    J Pharm Sci; 2013 May; 102(5):1458-67. PubMed ID: 23417751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninvasive measurement of transdermal drug delivery by impedance spectroscopy.
    Arpaia P; Cesaro U; Moccaldi N
    Sci Rep; 2017 Mar; 7():44647. PubMed ID: 28338008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transdermal delivery of naltrexol and skin permeability lifetime after microneedle treatment in hairless guinea pigs.
    Banks SL; Pinninti RR; Gill HS; Paudel KS; Crooks PA; Brogden NK; Prausnitz MR; Stinchcomb AL
    J Pharm Sci; 2010 Jul; 99(7):3072-80. PubMed ID: 20166200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Use of a Pressure-Indicating Sensor Film to Provide Feedback upon Hydrogel-Forming Microneedle Array Self-Application In Vivo.
    Vicente-Pérez EM; Quinn HL; McAlister E; O'Neill S; Hanna LA; Barry JG; Donnelly RF
    Pharm Res; 2016 Dec; 33(12):3072-3080. PubMed ID: 27633885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of microneedles-assisted in situ depot forming poloxamer gels for sustained transdermal drug delivery.
    Khan S; Minhas MU; Tekko IA; Donnelly RF; Thakur RRS
    Drug Deliv Transl Res; 2019 Aug; 9(4):764-782. PubMed ID: 30675693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microneedle-Assisted Skin Permeation by Nontoxic Bioengineerable Gas Vesicle Nanoparticles.
    Andar AU; Karan R; Pecher WT; DasSarma P; Hedrich WD; Stinchcomb AL; DasSarma S
    Mol Pharm; 2017 Mar; 14(3):953-958. PubMed ID: 28068767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery.
    Caudill CL; Perry JL; Tian S; Luft JC; DeSimone JM
    J Control Release; 2018 Aug; 284():122-132. PubMed ID: 29894710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formulation of hydrophobic peptides for skin delivery via coated microneedles.
    Zhao X; Coulman SA; Hanna SJ; Wong FS; Dayan CM; Birchall JC
    J Control Release; 2017 Nov; 265():2-13. PubMed ID: 28286315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of formulation pH on transport of naltrexone species and pore closure in microneedle-enhanced transdermal drug delivery.
    Ghosh P; Brogden NK; Stinchcomb AL
    Mol Pharm; 2013 Jun; 10(6):2331-9. PubMed ID: 23590208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of force of microneedle insertion on the permeability of insulin in skin.
    Cheung K; Han T; Das DB
    J Diabetes Sci Technol; 2014 May; 8(3):444-52. PubMed ID: 24876604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.