These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 23589448)
21. On the applicability of cluster models to study the chemical reactivity of carbon nanotubes. Denis PA; Iribarne F J Comput Chem; 2011 Aug; 32(11):2397-403. PubMed ID: 21598274 [TBL] [Abstract][Full Text] [Related]
22. Spin thermoelectric properties induced by hydrogen impurities in zigzag graphene nanoribbons. Esteki S; Farghadan R Phys Chem Chem Phys; 2024 Apr; 26(15):12035-12043. PubMed ID: 38576407 [TBL] [Abstract][Full Text] [Related]
23. Scaling of excitons in graphene nanoribbons with armchair shaped edges. Zhu X; Su H J Phys Chem A; 2011 Nov; 115(43):11998-2003. PubMed ID: 21939213 [TBL] [Abstract][Full Text] [Related]
24. Effect of layer stacking on the electronic structure of graphene nanoribbons. Kharche N; Zhou Y; O'Brien KP; Kar S; Nayak SK ACS Nano; 2011 Aug; 5(8):6096-101. PubMed ID: 21766785 [TBL] [Abstract][Full Text] [Related]
25. Metal-free ferromagnetic metal and intrinsic spin semiconductor: two different kinds of SWCNT functionalized BN nanoribbons. Lou P Phys Chem Chem Phys; 2015 Mar; 17(12):7949-59. PubMed ID: 25721493 [TBL] [Abstract][Full Text] [Related]
27. Unraveling the 13C NMR chemical shifts in single-walled carbon nanotubes: dependence on diameter and electronic structure. Engtrakul C; Irurzun VM; Gjersing EL; Holt JM; Larsen BA; Resasco DE; Blackburn JL J Am Chem Soc; 2012 Mar; 134(10):4850-6. PubMed ID: 22332844 [TBL] [Abstract][Full Text] [Related]
28. Layer-selective half-metallicity in bilayer graphene nanoribbons. Jeon GW; Lee KW; Lee CE Sci Rep; 2015 May; 5():9825. PubMed ID: 25950724 [TBL] [Abstract][Full Text] [Related]
29. Preserving the edge magnetism of zigzag graphene nanoribbons by ethylene termination: insight by Clar's rule. Li Y; Zhou Z; Cabrera CR; Chen Z Sci Rep; 2013; 3():2030. PubMed ID: 23778381 [TBL] [Abstract][Full Text] [Related]
30. p-n homo-junction arrays of aligned single walled carbon nanotubes fabricated by selective patterning of polyethyleneimine film. Park J; Yoon J; Kim GT; Ha JS Nanotechnology; 2011 Sep; 22(38):385302. PubMed ID: 21865628 [TBL] [Abstract][Full Text] [Related]
31. Energy gaps in "metallic" single-walled carbon nanotubes. Ouyang M; Huang JL; Cheung CL; Lieber CM Science; 2001 Apr; 292(5517):702-5. PubMed ID: 11326093 [TBL] [Abstract][Full Text] [Related]
32. Insertion of C50 into single-walled carbon nanotubes: Selectivity in interwall spacing and C50 isomers. Zhou Z; Zhao J; Schleyer Pv; Chen Z J Comput Chem; 2008 Apr; 29(5):781-7. PubMed ID: 17876758 [TBL] [Abstract][Full Text] [Related]
33. Tuning the energy barrier of water exchange reactions on Al(III) by interaction with the single-walled carbon nanotubes. Feng H; Qian Z; Wang C; Chen C; Chen J Dalton Trans; 2011 Apr; 40(16):4183-9. PubMed ID: 21390359 [TBL] [Abstract][Full Text] [Related]
36. Molecular-dynamic studies of carbon-water-carbon composite nanotubes. Zou J; Ji B; Feng XQ; Gao H Small; 2006 Nov; 2(11):1348-55. PubMed ID: 17192986 [TBL] [Abstract][Full Text] [Related]
37. Effects of boron nitride impurities on the elastic properties of carbon nanotubes. Yuan J; Liew KM Nanotechnology; 2008 Nov; 19(44):445703. PubMed ID: 21832745 [TBL] [Abstract][Full Text] [Related]
38. Ferromagnetism/antiferromagnetism transition between semihydrogenated and fully-aminated single-wall carbon nanotubes. Deng Q; Zhao L; Luo Y; Zhang M; Jing L; Zhao Y Nanoscale; 2011 Sep; 3(9):3743-6. PubMed ID: 21804988 [TBL] [Abstract][Full Text] [Related]
39. Effect of ending surface on energy and Young's modulus of an armchair single-walled carbon nanotubes. Cai J; Wang YD J Nanosci Nanotechnol; 2011 Dec; 11(12):10986-9. PubMed ID: 22409040 [TBL] [Abstract][Full Text] [Related]