These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 23589624)

  • 1. Cell-free co-production of an orthogonal transfer RNA activates efficient site-specific non-natural amino acid incorporation.
    Albayrak C; Swartz JR
    Nucleic Acids Res; 2013 Jun; 41(11):5949-63. PubMed ID: 23589624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-level cell-free synthesis yields of proteins containing site-specific non-natural amino acids.
    Goerke AR; Swartz JR
    Biotechnol Bioeng; 2009 Feb; 102(2):400-16. PubMed ID: 18781689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-specific incorporation of unnatural amino acids into proteins by cell-free protein synthesis.
    Ozawa K; Loh CT
    Methods Mol Biol; 2014; 1118():189-203. PubMed ID: 24395417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence characterization of the interaction of various transfer RNA species with elongation factor Tu.GTP: evidence for a new functional role for elongation factor Tu in protein biosynthesis.
    Janiak F; Dell VA; Abrahamson JK; Watson BS; Miller DL; Johnson AE
    Biochemistry; 1990 May; 29(18):4268-77. PubMed ID: 2190631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using E. coli-based cell-free protein synthesis to evaluate the kinetic performance of an orthogonal tRNA and aminoacyl-tRNA synthetase pair.
    Albayrak C; Swartz JR
    Biochem Biophys Res Commun; 2013 Feb; 431(2):291-5. PubMed ID: 23291171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct polymerization of proteins.
    Albayrak C; Swartz JR
    ACS Synth Biol; 2014 Jun; 3(6):353-62. PubMed ID: 24200191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-free protein synthesis from a release factor 1 deficient Escherichia coli activates efficient and multiple site-specific nonstandard amino acid incorporation.
    Hong SH; Ntai I; Haimovich AD; Kelleher NL; Isaacs FJ; Jewett MC
    ACS Synth Biol; 2014 Jun; 3(6):398-409. PubMed ID: 24328168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient cell-free protein synthesis platform for producing proteins with pyrrolysine-based noncanonical amino acids.
    Ranji Charna A; Des Soye BJ; Ntai I; Kelleher NL; Jewett MC
    Biotechnol J; 2022 Sep; 17(9):e2200096. PubMed ID: 35569121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition of the universally conserved 3'-CCA end of tRNA by elongation factor EF-Tu.
    Liu JC; Liu M; Horowitz J
    RNA; 1998 Jun; 4(6):639-46. PubMed ID: 9622123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A versatile tRNA aminoacylation catalyst based on RNA.
    Murakami H; Saito H; Suga H
    Chem Biol; 2003 Jul; 10(7):655-62. PubMed ID: 12890539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-yield cell-free protein synthesis for site-specific incorporation of unnatural amino acids at two sites.
    Ozawa K; Loscha KV; Kuppan KV; Loh CT; Dixon NE; Otting G
    Biochem Biophys Res Commun; 2012 Feb; 418(4):652-6. PubMed ID: 22293204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutagenesis of glutamine 290 in Escherichia coli and mitochondrial elongation factor Tu affects interactions with mitochondrial aminoacyl-tRNAs and GTPase activity.
    Hunter SE; Spremulli LL
    Biochemistry; 2004 Jun; 43(22):6917-27. PubMed ID: 15170329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of Recognition between tRNA and elongation factor Tu.
    Eargle J; Black AA; Sethi A; Trabuco LG; Luthey-Schulten Z
    J Mol Biol; 2008 Apr; 377(5):1382-405. PubMed ID: 18336835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexizyme as a versatile tRNA acylation catalyst and the application for translation.
    Murakami H; Ohta A; Goto Y; Sako Y; Suga H
    Nucleic Acids Symp Ser (Oxf); 2006; (50):35-6. PubMed ID: 17150804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational optimization of amber suppressor tRNAs toward efficient incorporation of a non-natural amino acid into protein in a eukaryotic wheat germ extract.
    Ogawa A; Namba Y; Gakumasawa M
    Org Biomol Chem; 2016 Mar; 14(9):2671-8. PubMed ID: 26832824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uniform binding of aminoacyl-tRNAs to elongation factor Tu by thermodynamic compensation.
    LaRiviere FJ; Wolfson AD; Uhlenbeck OC
    Science; 2001 Oct; 294(5540):165-8. PubMed ID: 11588263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translation system engineering in Escherichia coli enhances non-canonical amino acid incorporation into proteins.
    Gan R; Perez JG; Carlson ED; Ntai I; Isaacs FJ; Kelleher NL; Jewett MC
    Biotechnol Bioeng; 2017 May; 114(5):1074-1086. PubMed ID: 27987323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elongation factor-Tu can repetitively engage aminoacyl-tRNA within the ribosome during the proofreading stage of tRNA selection.
    Morse JC; Girodat D; Burnett BJ; Holm M; Altman RB; Sanbonmatsu KY; Wieden HJ; Blanchard SC
    Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3610-3620. PubMed ID: 32024753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evolutionary 'intermediate state' of mitochondrial translation systems found in Trichinella species of parasitic nematodes: co-evolution of tRNA and EF-Tu.
    Arita M; Suematsu T; Osanai A; Inaba T; Kamiya H; Kita K; Sisido M; Watanabe Y; Ohtsuki T
    Nucleic Acids Res; 2006; 34(18):5291-9. PubMed ID: 17012285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous Binding of Multiple EF-Tu Copies to Translating Ribosomes in Live
    Mustafi M; Weisshaar JC
    mBio; 2018 Jan; 9(1):. PubMed ID: 29339430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.