These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 23589707)

  • 1. Optimization of drug delivery systems for intraperitoneal therapy to extend the residence time of the chemotherapeutic agent.
    De Smet L; Ceelen W; Remon JP; Vervaet C
    ScientificWorldJournal; 2013; 2013():720858. PubMed ID: 23589707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving Anti-Tumor Activity of Curcumin by Polymeric Micelles in Thermosensitive Hydrogel System in Colorectal Peritoneal Carcinomatosis Model.
    Zhang W; Cui T; Liu L; Wu Q; Sun L; Li L; Wang N; Gong C
    J Biomed Nanotechnol; 2015 Jul; 11(7):1173-82. PubMed ID: 26307840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An injectable depot system for sustained intraperitoneal chemotherapy of ovarian cancer results in favorable drug distribution at the whole body, peritoneal and intratumoral levels.
    Zahedi P; Stewart J; De Souza R; Piquette-Miller M; Allen C
    J Control Release; 2012 Mar; 158(3):379-85. PubMed ID: 22154933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printing injectable microbeads using a composite liposomal ink for local treatment of peritoneal diseases.
    Eugster R; Ganguin AA; Seidi A; Aleandri S; Luciani P
    Drug Deliv Transl Res; 2024 Jun; 14(6):1567-1581. PubMed ID: 38006449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraperitoneal chemotherapy for peritoneal metastases: an expert opinion.
    Ceelen W; Braet H; van Ramshorst G; Willaert W; Remaut K
    Expert Opin Drug Deliv; 2020 Apr; 17(4):511-522. PubMed ID: 32142389
    [No Abstract]   [Full Text] [Related]  

  • 6. A novel approach for systematic delivery of a hydrophobic anti-leukemia agent tamibarotene mediated by nanostructured lipid carrier.
    Liu X; Wang Z; Feng R; Hu Y; Huang G
    J Biomed Nanotechnol; 2013 Sep; 9(9):1586-93. PubMed ID: 23980506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug self-delivery systems for cancer therapy.
    Qin SY; Zhang AQ; Cheng SX; Rong L; Zhang XZ
    Biomaterials; 2017 Jan; 112():234-247. PubMed ID: 27768976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanocarriers for the targeted treatment of ovarian cancers.
    Tomasina J; Lheureux S; Gauduchon P; Rault S; Malzert-Fréon A
    Biomaterials; 2013 Jan; 34(4):1073-101. PubMed ID: 23174141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale tumor spatiokinetic model for intraperitoneal therapy.
    Au JL; Guo P; Gao Y; Lu Z; Wientjes MG; Tsai M; Wientjes MG
    AAPS J; 2014 May; 16(3):424-39. PubMed ID: 24570339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a nanocapsule-loaded hydrogel for drug delivery for intraperitoneal administration.
    Teja Surikutchi B; Obenza-Otero R; Russo E; Zelzer M; Golán Cancela I; Costoya JA; Crecente Campo J; José Alonso M; Marlow M
    Int J Pharm; 2022 Jun; 622():121828. PubMed ID: 35595041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Doxorubicin-Loaded Micelles Based on Folic Acid Conjugated pH-Dependent Thermo-Sensitive Copolymer: In Vitro and In Vivo Evaluation.
    Zhao H; Tao L; Yu R; Yuan H; Lan M
    J Nanosci Nanotechnol; 2015 Aug; 15(8):5553-8. PubMed ID: 26369116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic nanoparticle-based drug delivery for cancer therapy.
    Tietze R; Zaloga J; Unterweger H; Lyer S; Friedrich RP; Janko C; Pöttler M; Dürr S; Alexiou C
    Biochem Biophys Res Commun; 2015 Dec; 468(3):463-70. PubMed ID: 26271592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymeric micelles based on PEGylated chitosan-g-lipoic acid as carrier for efficient intracellular drug delivery.
    Liu G; Li K; Wang H
    J Biomater Appl; 2017 Feb; 31(7):1039-1048. PubMed ID: 28178903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro- and nanocapsules: a lively field of research.
    van Hest JC
    Macromol Biosci; 2010 May; 10(5):463-4. PubMed ID: 20401900
    [No Abstract]   [Full Text] [Related]  

  • 15. Drug delivery systems for intraperitoneal therapy.
    Bajaj G; Yeo Y
    Pharm Res; 2010 May; 27(5):735-8. PubMed ID: 20198409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chitosan-phospholipid blend for sustained and localized delivery of docetaxel to the peritoneal cavity.
    Zahedi P; De Souza R; Piquette-Miller M; Allen C
    Int J Pharm; 2009 Jul; 377(1-2):76-84. PubMed ID: 19442712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the Physicochemical Characteristics of Particle-Based Carriers for Intraperitoneal Local Chemotherapy.
    Alavi S; Haeri A; Mahlooji I; Dadashzadeh S
    Pharm Res; 2020 Jun; 37(6):119. PubMed ID: 32494940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetically assisted intraperitoneal drug delivery for cancer chemotherapy.
    Shamsi M; Sedaghatkish A; Dejam M; Saghafian M; Mohammadi M; Sanati-Nezhad A
    Drug Deliv; 2018 Nov; 25(1):846-861. PubMed ID: 29589479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticle systems reduce systemic toxicity in cancer treatment.
    Wang H; Yu J; Lu X; He X
    Nanomedicine (Lond); 2016 Jan; 11(2):103-6. PubMed ID: 26653177
    [No Abstract]   [Full Text] [Related]  

  • 20. Intraperitoneal drug therapy: an advantage.
    Chaudhary K; Haddadin S; Nistala R; Papageorgio C
    Curr Clin Pharmacol; 2010 May; 5(2):82-8. PubMed ID: 20156151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.