These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 23589832)

  • 61. Contribution of the functional dyad of animal toxins acting on voltage-gated Kv1-type channels.
    Mouhat S; De Waard M; Sabatier JM
    J Pept Sci; 2005 Feb; 11(2):65-8. PubMed ID: 15635666
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Venom-derived peptides inhibiting Kir channels: Past, present, and future.
    Doupnik CA
    Neuropharmacology; 2017 Dec; 127():161-172. PubMed ID: 28716449
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Dielectric self-energy in Poisson-Boltzmann and Poisson-Nernst-Planck models of ion channels.
    Corry B; Kuyucak S; Chung SH
    Biophys J; 2003 Jun; 84(6):3594-606. PubMed ID: 12770869
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Fractional Poisson-Nernst-Planck Model for Ion Channels I: Basic Formulations and Algorithms.
    Chen D
    Bull Math Biol; 2017 Nov; 79(11):2696-2726. PubMed ID: 28940114
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Structural modeling of peptide toxin-ion channel interactions using RosettaDock.
    Mateos DL; Yarov-Yarovoy V
    Proteins; 2023 Jul; 91(7):872-889. PubMed ID: 36729043
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Toxins targeting voltage-activated Ca2+ channels and their potential biomedical applications.
    Gandini MA; Sandoval A; Felix R
    Curr Top Med Chem; 2015; 15(7):604-16. PubMed ID: 25714378
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Computational design of transmembrane pores.
    Xu C; Lu P; Gamal El-Din TM; Pei XY; Johnson MC; Uyeda A; Bick MJ; Xu Q; Jiang D; Bai H; Reggiano G; Hsia Y; Brunette TJ; Dou J; Ma D; Lynch EM; Boyken SE; Huang PS; Stewart L; DiMaio F; Kollman JM; Luisi BF; Matsuura T; Catterall WA; Baker D
    Nature; 2020 Sep; 585(7823):129-134. PubMed ID: 32848250
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Guanidinium Toxins and Their Interactions with Voltage-Gated Sodium Ion Channels.
    Durán-Riveroll LM; Cembella AD
    Mar Drugs; 2017 Oct; 15(10):. PubMed ID: 29027912
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [Structures and functions of animal toxins].
    Guenneugues M; Ménez A
    C R Seances Soc Biol Fil; 1997; 191(3):329-44. PubMed ID: 9295963
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Ion channels: recent progress and prospects.
    Chung SH; Kuyucak S
    Eur Biophys J; 2002 Jul; 31(4):283-93. PubMed ID: 12122475
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Animal toxins and renal ion transport: Another dimension in tropical nephrology.
    Sitprija V; Sitprija S
    Nephrology (Carlton); 2016 May; 21(5):355-62. PubMed ID: 26421422
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Computer-Aided Drug Discovery and Design Targeting Ion Channels.
    Zhang Q; Gao Z; Yang H
    Curr Top Med Chem; 2016; 16(16):1819-29. PubMed ID: 26975507
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Anuroctoxin, a new scorpion toxin of the alpha-KTx 6 subfamily, is highly selective for Kv1.3 over IKCa1 ion channels of human T lymphocytes.
    Bagdány M; Batista CV; Valdez-Cruz NA; Somodi S; Rodriguez de la Vega RC; Licea AF; Varga Z; Gáspár R; Possani LD; Panyi G
    Mol Pharmacol; 2005 Apr; 67(4):1034-44. PubMed ID: 15615696
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Nuclear magnetic resonance spectroscopy of peptide ion channel ligands: cloning and expression as aid to evaluation of structural and dynamic properties.
    Reily MD; Bokman AM; Offord J; McConnell P
    Methods Enzymol; 1999; 294():92-117. PubMed ID: 9916224
    [No Abstract]   [Full Text] [Related]  

  • 75. Prediction of ion channel activity using binary kernel discrimination.
    Willett P; Wilton D; Hartzoulakis B; Tang R; Ford J; Madge D
    J Chem Inf Model; 2007; 47(5):1961-6. PubMed ID: 17622131
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Animal Venom Peptides as a Treasure Trove for New Therapeutics Against Neurodegenerative Disorders.
    Yang X; Wang Y; Wu C; Ling EA
    Curr Med Chem; 2019; 26(25):4749-4774. PubMed ID: 30378475
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Computational membrane biophysics: From ion channel interactions with drugs to cellular function.
    Miranda WE; Ngo VA; Perissinotti LL; Noskov SY
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt B):1643-1653. PubMed ID: 28847523
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Ligand action on sodium, potassium, and calcium channels: role of permeant ions.
    Zhorov BS; Tikhonov DB
    Trends Pharmacol Sci; 2013 Mar; 34(3):154-61. PubMed ID: 23375737
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Treating autoimmune disorders with venom-derived peptides.
    Shen B; Cao Z; Li W; Sabatier JM; Wu Y
    Expert Opin Biol Ther; 2017 Sep; 17(9):1065-1075. PubMed ID: 28695745
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Continuum electrostatics fails to describe ion permeation in the gramicidin channel.
    Edwards S; Corry B; Kuyucak S; Chung SH
    Biophys J; 2002 Sep; 83(3):1348-60. PubMed ID: 12202360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.