These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 23589851)
1. Acetyl-CoA induces transcription of the key G1 cyclin CLN3 to promote entry into the cell division cycle in Saccharomyces cerevisiae. Shi L; Tu BP Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7318-23. PubMed ID: 23589851 [TBL] [Abstract][Full Text] [Related]
2. Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. Tyers M; Tokiwa G; Futcher B EMBO J; 1993 May; 12(5):1955-68. PubMed ID: 8387915 [TBL] [Abstract][Full Text] [Related]
4. Cln3-associated kinase activity in Saccharomyces cerevisiae is regulated by the mating factor pathway. Jeoung DI; Oehlen LJ; Cross FR Mol Cell Biol; 1998 Jan; 18(1):433-41. PubMed ID: 9418890 [TBL] [Abstract][Full Text] [Related]
5. The transcriptional network activated by Cln3 cyclin at the G1-to-S transition of the yeast cell cycle. Ferrezuelo F; Colomina N; Futcher B; Aldea M Genome Biol; 2010; 11(6):R67. PubMed ID: 20573214 [TBL] [Abstract][Full Text] [Related]
6. Glucose starvation induces a switch in the histone acetylome for activation of gluconeogenic and fat metabolism genes. Hsieh WC; Sutter BM; Ruess H; Barnes SD; Malladi VS; Tu BP Mol Cell; 2022 Jan; 82(1):60-74.e5. PubMed ID: 34995509 [TBL] [Abstract][Full Text] [Related]
7. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Cai L; Sutter BM; Li B; Tu BP Mol Cell; 2011 May; 42(4):426-37. PubMed ID: 21596309 [TBL] [Abstract][Full Text] [Related]
8. Hyperactive Ras disrupts cell size control and a key step in cell cycle entry in budding yeast. DeWitt JT; Chinwuba JC; Kellogg DR Genetics; 2023 Oct; 225(2):. PubMed ID: 37531631 [TBL] [Abstract][Full Text] [Related]
9. Genetic analysis of the shared role of CLN3 and BCK2 at the G(1)-S transition in Saccharomyces cerevisiae. Wijnen H; Futcher B Genetics; 1999 Nov; 153(3):1131-43. PubMed ID: 10545447 [TBL] [Abstract][Full Text] [Related]
10. Growth-dependent signals drive an increase in early G1 cyclin concentration to link cell cycle entry with cell growth. Sommer RA; DeWitt JT; Tan R; Kellogg DR Elife; 2021 Oct; 10():. PubMed ID: 34713806 [TBL] [Abstract][Full Text] [Related]
11. Xbp1 directs global repression of budding yeast transcription during the transition to quiescence and is important for the longevity and reversibility of the quiescent state. Miles S; Li L; Davison J; Breeden LL PLoS Genet; 2013 Oct; 9(10):e1003854. PubMed ID: 24204289 [TBL] [Abstract][Full Text] [Related]
12. The G(1) cyclin Cln3 promotes cell cycle entry via the transcription factor Swi6. Wijnen H; Landman A; Futcher B Mol Cell Biol; 2002 Jun; 22(12):4402-18. PubMed ID: 12024050 [TBL] [Abstract][Full Text] [Related]
13. Evidence for novel mechanisms that control cell-cycle entry and cell size. Brambila A; Prichard BE; DeWitt JT; Kellogg DR Mol Biol Cell; 2024 Apr; 35(4):ar46. PubMed ID: 38231863 [TBL] [Abstract][Full Text] [Related]
14. Dosage suppressors of the dominant G1 cyclin mutant CLN3-2: identification of a yeast gene encoding a putative RNA/ssDNA binding protein. Sugimoto K; Matsumoto K; Kornberg RD; Reed SI; Wittenberg C Mol Gen Genet; 1995 Oct; 248(6):712-8. PubMed ID: 7476874 [TBL] [Abstract][Full Text] [Related]
15. Cyclin Cln3 is retained at the ER and released by the J chaperone Ydj1 in late G1 to trigger cell cycle entry. Vergés E; Colomina N; Garí E; Gallego C; Aldea M Mol Cell; 2007 Jun; 26(5):649-62. PubMed ID: 17560371 [TBL] [Abstract][Full Text] [Related]
16. Transcriptional regulation of CLN3 expression by glucose in Saccharomyces cerevisiae. Parviz F; Hall DD; Markwardt DD; Heideman W J Bacteriol; 1998 Sep; 180(17):4508-15. PubMed ID: 9721289 [TBL] [Abstract][Full Text] [Related]
17. Cln3 activates G1-specific transcription via phosphorylation of the SBF bound repressor Whi5. de Bruin RA; McDonald WH; Kalashnikova TI; Yates J; Wittenberg C Cell; 2004 Jun; 117(7):887-98. PubMed ID: 15210110 [TBL] [Abstract][Full Text] [Related]
18. Daughter-specific transcription factors regulate cell size control in budding yeast. Di Talia S; Wang H; Skotheim JM; Rosebrock AP; Futcher B; Cross FR PLoS Biol; 2009 Oct; 7(10):e1000221. PubMed ID: 19841732 [TBL] [Abstract][Full Text] [Related]
19. G1/S Transcription Factor Copy Number Is a Growth-Dependent Determinant of Cell Cycle Commitment in Yeast. Dorsey S; Tollis S; Cheng J; Black L; Notley S; Tyers M; Royer CA Cell Syst; 2018 May; 6(5):539-554.e11. PubMed ID: 29792825 [TBL] [Abstract][Full Text] [Related]
20. G Kõivomägi M; Swaffer MP; Turner JJ; Marinov G; Skotheim JM Science; 2021 Oct; 374(6565):347-351. PubMed ID: 34648313 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]