BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 23589865)

  • 1. Engineering of TEV protease variants by yeast ER sequestration screening (YESS) of combinatorial libraries.
    Yi L; Gebhard MC; Li Q; Taft JM; Georgiou G; Iverson BL
    Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7229-34. PubMed ID: 23589865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast Endoplasmic Reticulum Sequestration Screening for the Engineering of Proteases from Libraries Expressed in Yeast.
    Yi L; Taft JM; Li Q; Gebhard MC; Georgiou G; Iverson BL
    Methods Mol Biol; 2015; 1319():81-93. PubMed ID: 26060071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Profiling Protease Specificity: Combining Yeast ER Sequestration Screening (YESS) with Next Generation Sequencing.
    Li Q; Yi L; Hoi KH; Marek P; Georgiou G; Iverson BL
    ACS Chem Biol; 2017 Feb; 12(2):510-518. PubMed ID: 27977123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. YESS 2.0, a Tunable Platform for Enzyme Evolution, Yields Highly Active TEV Protease Variants.
    Denard CA; Paresi C; Yaghi R; McGinnis N; Bennett Z; Yi L; Georgiou G; Iverson BL
    ACS Synth Biol; 2021 Jan; 10(1):63-71. PubMed ID: 33401904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modular and integrative activity reporters enhance biochemical studies in the yeast ER.
    Martinusen SG; Slaton EW; Nelson SE; Pulgar MA; Besu JT; Simas CF; Denard CA
    Protein Eng Des Sel; 2024 Jan; 37():. PubMed ID: 38696722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering of TEV protease variants with redesigned substrate specificity.
    Meister SW; Parks L; Kolmar L; Borras AM; Ståhl S; Löfblom J
    Biotechnol J; 2023 Nov; 18(11):e2200625. PubMed ID: 37448316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening of Yeast Display Libraries of Enzymatically Treated Peptides to Discover Macrocyclic Peptide Ligands.
    Bowen J; Schneible J; Bacon K; Labar C; Menegatti S; Rao BM
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33562883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Analysis of the Substrate Specificity of Human Rhinovirus 3C Protease and Exploration of Its Substrate Recognition Mechanisms.
    Fan X; Li X; Zhou Y; Mei M; Liu P; Zhao J; Peng W; Jiang ZB; Yang S; Iverson BL; Zhang G; Yi L
    ACS Chem Biol; 2020 Jan; 15(1):63-73. PubMed ID: 31613083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A tobacco etch virus protease with increased substrate tolerance at the P1' position.
    Renicke C; Spadaccini R; Taxis C
    PLoS One; 2013; 8(6):e67915. PubMed ID: 23826349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering a novel endopeptidase based on SARS 3CL(pro).
    Kuo CJ; Shih YP; Kan D; Liang PH
    Biotechniques; 2009 Dec; 47(6):1029-32. PubMed ID: 20041855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient site-specific processing of fusion proteins by tobacco vein mottling virus protease in vivo and in vitro.
    Nallamsetty S; Kapust RB; Tözsér J; Cherry S; Tropea JE; Copeland TD; Waugh DS
    Protein Expr Purif; 2004 Nov; 38(1):108-15. PubMed ID: 15477088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural determinants of tobacco vein mottling virus protease substrate specificity.
    Sun P; Austin BP; Tözsér J; Waugh DS
    Protein Sci; 2010 Nov; 19(11):2240-51. PubMed ID: 20862670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly active and selective endopeptidases with programmed substrate specificities.
    Varadarajan N; Rodriguez S; Hwang BY; Georgiou G; Iverson BL
    Nat Chem Biol; 2008 May; 4(5):290-4. PubMed ID: 18391948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The P1' specificity of tobacco etch virus protease.
    Kapust RB; Tözsér J; Copeland TD; Waugh DS
    Biochem Biophys Res Commun; 2002 Jun; 294(5):949-55. PubMed ID: 12074568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of aromatic residue-controlled protein retention in the endoplasmic reticulum of
    Mei M; Zhai C; Li X; Zhou Y; Peng W; Ma L; Wang Q; Iverson BL; Zhang G; Yi L
    J Biol Chem; 2017 Dec; 292(50):20707-20719. PubMed ID: 29038295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved solubility of TEV protease by directed evolution.
    van den Berg S; Löfdahl PA; Härd T; Berglund H
    J Biotechnol; 2006 Feb; 121(3):291-8. PubMed ID: 16150509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unexpected tobacco etch virus (TEV) protease cleavage of recombinant human proteins.
    Beaumont LP; Mehalko J; Johnson A; Wall VE; Esposito D
    Protein Expr Purif; 2024 Aug; 220():106488. PubMed ID: 38679188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed evolution improves the catalytic efficiency of TEV protease.
    Sanchez MI; Ting AY
    Nat Methods; 2020 Feb; 17(2):167-174. PubMed ID: 31819267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directed evolution of the 3C protease from coxsackievirus using a novel fluorescence-assisted intracellular method.
    Meister SW; Hendrikse NM; Löfblom J
    Biol Chem; 2019 Feb; 400(3):405-415. PubMed ID: 30521472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate profiling of tobacco etch virus protease using a novel fluorescence-assisted whole-cell assay.
    Kostallas G; Löfdahl PÅ; Samuelson P
    PLoS One; 2011 Jan; 6(1):e16136. PubMed ID: 21267463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.