BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 23590186)

  • 1. Quantum confinement controls photocatalysis: a free energy analysis for photocatalytic proton reduction at CdSe nanocrystals.
    Zhao J; Holmes MA; Osterloh FE
    ACS Nano; 2013 May; 7(5):4316-25. PubMed ID: 23590186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size and ligand effects on the electrochemical and spectroelectrochemical responses of CdSe nanocrystals.
    Querner C; Reiss P; Sadki S; Zagorska M; Pron A
    Phys Chem Chem Phys; 2005 Sep; 7(17):3204-9. PubMed ID: 16240033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical properties of CdSe and CdTe quantum dots.
    Amelia M; Lincheneau C; Silvi S; Credi A
    Chem Soc Rev; 2012 Sep; 41(17):5728-43. PubMed ID: 22763461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum confinement controlled photocatalytic water splitting by suspended CdSe nanocrystals.
    Holmes MA; Townsend TK; Osterloh FE
    Chem Commun (Camb); 2012 Jan; 48(3):371-3. PubMed ID: 22083249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and size effects on the spectroscopic and redox properties of CdSe nanocrystals in solution: the role of defect states.
    Amelia M; Impellizzeri S; Monaco S; Yildiz I; Silvi S; Raymo FM; Credi A
    Chemphyschem; 2011 Aug; 12(12):2280-8. PubMed ID: 21698742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the Photocatalytic Hydrogen Production of Semiconductor Nanocrystal-Based Hydrogels.
    Schlenkrich J; Lübkemann-Warwas F; Graf RT; Wesemann C; Schoske L; Rosebrock M; Hindricks KDJ; Behrens P; Bahnemann DW; Dorfs D; Bigall NC
    Small; 2023 May; 19(21):e2208108. PubMed ID: 36828791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoelectrochemical processes in polymer-tethered CdSe nanocrystals.
    Shallcross RC; D'Ambruoso GD; Pyun J; Armstrong NR
    J Am Chem Soc; 2010 Mar; 132(8):2622-32. PubMed ID: 20136125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy relaxation in CdSe nanocrystals: the effects of morphology and film preparation.
    Spann BT; Chen L; Ruan X; Xu X
    Opt Express; 2013 Jan; 21 Suppl 1():A15-22. PubMed ID: 23389266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced multiple exciton dissociation from CdSe quantum rods: the effect of nanocrystal shape.
    Zhu H; Lian T
    J Am Chem Soc; 2012 Jul; 134(27):11289-97. PubMed ID: 22702343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature- and field-dependent energy transfer in CdSe nanocrystal aggregates studied by magneto-photoluminescence spectroscopy.
    Blumling DE; Tokumoto T; McGill S; Knappenberger KL
    Phys Chem Chem Phys; 2012 Aug; 14(31):11053-9. PubMed ID: 22767253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate driven photochemistry of CdSe quantum dot films: charge injection and irreversible transformations on oxide surfaces.
    Tvrdy K; Kamat PV
    J Phys Chem A; 2009 Apr; 113(16):3765-72. PubMed ID: 19152253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoinduced charge transfer between CdSe nanocrystal quantum dots and Ru-polypyridine complexes.
    Sykora M; Petruska MA; Alstrum-Acevedo J; Bezel I; Meyer TJ; Klimov VI
    J Am Chem Soc; 2006 Aug; 128(31):9984-5. PubMed ID: 16881606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conjugated polymer/nanocrystal nanocomposites for renewable energy applications in photovoltaics and photocatalysis.
    Su YW; Lin WH; Hsu YJ; Wei KH
    Small; 2014 Nov; 10(22):4427-42. PubMed ID: 25074641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of heat transfer fluids in the synthesis of high-quality CdSe quantum dots, core/shell quantum dots, and quantum rods.
    Asokan S; Krueger KM; Alkhawaldeh A; Carreon AR; Mu Z; Colvin VL; Mantzaris NV; Wong MS
    Nanotechnology; 2005 Oct; 16(10):2000-11. PubMed ID: 20817962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum confinement controlled solar hydrogen production from hydrogen sulfide using a highly stable CdS(0.5)Se(0.5)/CdSe quantum dot-glass nanosystem.
    Apte SK; Garaje SN; Naik SD; Waichal RP; Baeg JO; Kale BB
    Nanoscale; 2014 Jan; 6(2):908-15. PubMed ID: 24281737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface states in the photoionization of high-quality CdSe core/shell nanocrystals.
    Li S; Steigerwald ML; Brus LE
    ACS Nano; 2009 May; 3(5):1267-73. PubMed ID: 19374391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-dependent dissociation pH of thiolate ligands from cadmium chalcogenide nanocrystals.
    Aldana J; Lavelle N; Wang Y; Peng X
    J Am Chem Soc; 2005 Mar; 127(8):2496-504. PubMed ID: 15725004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exciton polarizability in semiconductor nanocrystals.
    Wang F; Shan J; Islam MA; Herman IP; Bonn M; Heinz TF
    Nat Mater; 2006 Nov; 5(11):861-4. PubMed ID: 17028577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanojunction-mediated photocatalytic enhancement in heterostructured CdS/ZnO, CdSe/ZnO, and CdTe/ZnO nanocrystals.
    Eley C; Li T; Liao F; Fairclough SM; Smith JM; Smith G; Tsang SC
    Angew Chem Int Ed Engl; 2014 Jul; 53(30):7838-42. PubMed ID: 24962739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.