BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23590199)

  • 1. Mechanism of the interaction of plant alkaloid vincristine with DNA and chromatin: spectroscopic study.
    Mohammadgholi A; Rabbani-Chadegani A; Fallah S
    DNA Cell Biol; 2013 May; 32(5):228-35. PubMed ID: 23590199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the interaction between berberine and nucleosomes in solution: Spectroscopic and equilibrium dialysis approach.
    Rabbani-Chadegani A; Mollaei H; Sargolzaei J
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Feb; 173():418-424. PubMed ID: 27705846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic detection of etoposide binding to chromatin components: the role of histone proteins.
    Chamani E; Rabbani-Chadegani A; Zahraei Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():292-9. PubMed ID: 24954753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of topotecan to chromatin: Insights into cooperative binding and comparison with DNA.
    Babaei M; Rabbani-Chadegani A; Ghadam P
    Int J Biol Macromol; 2015 Sep; 80():57-63. PubMed ID: 26092169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of vinca alkaloid anticancer drug, vinorelbine, on chromatin and histone proteins in solution.
    Rabbani-Chadegani A; Chamani E; Hajihassan Z
    Eur J Pharmacol; 2009 Jun; 613(1-3):34-8. PubMed ID: 19394329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic analysis of the interaction of valproic acid with histone H1 in solution and in chromatin structure.
    Sargolzaei J; Rabbani-Chadegani A; Mollaei H; Deezagi A
    Int J Biol Macromol; 2017 Jun; 99():427-432. PubMed ID: 28263810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring binding affinity of oxaliplatin and carboplatin, to nucleoprotein structure of chromatin: spectroscopic study and histone proteins as a target.
    Soori H; Rabbani-Chadegani A; Davoodi J
    Eur J Med Chem; 2015 Jan; 89():844-50. PubMed ID: 25462284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the binding affinity of anticancer drug mitoxantrone to chromatin, DNA and histone proteins.
    Hajihassan Z; Rabbani-Chadegani A
    J Biomed Sci; 2009 Mar; 16(1):31. PubMed ID: 19284573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic studies of dactinomycin and vinorelbine binding to deoxyribonucleic acid and chromatin.
    Rabbani-Chadegani A; Keyvani-Ghamsari S; Zarkar N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 84(1):62-7. PubMed ID: 21981942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation on the chromium oxide interaction with soluble chromatin and histone H1: a spectroscopic study.
    Khorsandi K; Rabbani-Chadegani A
    Int J Biol Macromol; 2014 Sep; 70():57-63. PubMed ID: 24960121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA interaction studies of an anticancer plant alkaloid, vincristine, using Fourier transform infrared spectroscopy.
    Tyagi G; Jangir DK; Singh P; Mehrotra R
    DNA Cell Biol; 2010 Nov; 29(11):693-9. PubMed ID: 20662555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. tRNA binding with anti-cancer alkaloids-nature of interaction and comparison with DNA-alkaloids adducts.
    Tyagi G; Agarwal S; Mehrotra R
    J Photochem Photobiol B; 2015 Jan; 142():250-6. PubMed ID: 25574589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on the genotoxic effect of chromium oxide (Cr VI): interaction with deoxyribonucleic acid in solution.
    Khorsandi K; Rabbani-Chadegani A
    Mutat Res; 2013 Jan; 750(1-2):105-10. PubMed ID: 23098859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for the binding affinity of daunomycin to HMGB1 protein in chromatin and in solution.
    Lotfi S; Rabbani-Chadegani A; Ghadam P
    Int J Biol Macromol; 2013 Jan; 52():206-11. PubMed ID: 23036589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a less toxic vinca alkaloid derivative for use as a chemotherapeutic agent, based on in silico structural insights and metabolic interactions with CYP3A4 and CYP3A5.
    Saba N; Seal A
    J Mol Model; 2018 Mar; 24(4):82. PubMed ID: 29502215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of the effect of lead nitrate on rat liver chromatin, DNA and histone proteins in solution.
    Rabbani-Chadegani A; Abdosamadi S; Fani N; Mohammadian S
    Arch Toxicol; 2009 Jun; 83(6):565-70. PubMed ID: 18839148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimitotic and tubulin-interacting properties of vinflunine, a novel fluorinated Vinca alkaloid.
    Kruczynski A; Barret JM; EtiƩvant C; Colpaert F; Fahy J; Hill BT
    Biochem Pharmacol; 1998 Mar; 55(5):635-48. PubMed ID: 9515574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biophysical studies on the effect of the 13 position substitution of the anticancer alkaloid berberine on its DNA binding.
    Bhowmik D; Hossain M; Buzzetti F; D'Auria R; Lombardi P; Kumar GS
    J Phys Chem B; 2012 Feb; 116(7):2314-24. PubMed ID: 22276583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A contribution of nonhistone proteins to the conformation of chromatin.
    Tashiro T; Kurokawa M
    Eur J Biochem; 1975 Dec; 60(2):569-77. PubMed ID: 1204656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic studies of the effects of anticancer drug mitoxantrone interaction with calf-thymus DNA.
    Agarwal S; Jangir DK; Mehrotra R
    J Photochem Photobiol B; 2013 Mar; 120():177-82. PubMed ID: 23266050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.