BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 23590256)

  • 1. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors.
    Peng L; Peng X; Liu B; Wu C; Xie Y; Yu G
    Nano Lett; 2013 May; 13(5):2151-7. PubMed ID: 23590256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two dimensional nanomaterials for flexible supercapacitors.
    Peng X; Peng L; Wu C; Xie Y
    Chem Soc Rev; 2014 May; 43(10):3303-23. PubMed ID: 24614864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of Hierarchical α-MnO2 Nanowires@Ultrathin δ-MnO2 Nanosheets Core-Shell Nanostructure with Excellent Cycling Stability for High-Power Asymmetric Supercapacitor Electrodes.
    Ma Z; Shao G; Fan Y; Wang G; Song J; Shen D
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9050-8. PubMed ID: 27010242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical hollow MnO
    Xu K; Li S; Yang J; Hu J
    J Colloid Interface Sci; 2018 Mar; 513():448-454. PubMed ID: 29175738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intertwined nanocarbon and manganese oxide hybrid foam for high-energy supercapacitors.
    Wang W; Guo S; Bozhilov KN; Yan D; Ozkan M; Ozkan CS
    Small; 2013 Nov; 9(21):3714-21. PubMed ID: 23650047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalable 2D Hierarchical Porous Carbon Nanosheets for Flexible Supercapacitors with Ultrahigh Energy Density.
    Yao L; Wu Q; Zhang P; Zhang J; Wang D; Li Y; Ren X; Mi H; Deng L; Zheng Z
    Adv Mater; 2018 Mar; 30(11):. PubMed ID: 29357121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors.
    Jin Y; Chen H; Chen M; Liu N; Li Q
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3408-16. PubMed ID: 23488813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyethyleneimine-Mediated Fabrication of Two-Dimensional Cobalt Sulfide/Graphene Hybrid Nanosheets for High-Performance Supercapacitors.
    Wang M; Yang J; Liu S; Hu C; Li S; Qiu J
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26235-26242. PubMed ID: 31245998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MnO2 Nanosheets Grown on Nitrogen-Doped Hollow Carbon Shells as a High-Performance Electrode for Asymmetric Supercapacitors.
    Li L; Li R; Gai S; Ding S; He F; Zhang M; Yang P
    Chemistry; 2015 May; 21(19):7119-26. PubMed ID: 25801647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible asymmetric supercapacitors based on ultrathin two-dimensional nanosheets with outstanding electrochemical performance and aesthetic property.
    Shi S; Xu C; Yang C; Chen Y; Liu J; Kang F
    Sci Rep; 2013; 3():2598. PubMed ID: 24008931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene-Based Nanomaterials for Flexible and Wearable Supercapacitors.
    Huang L; Santiago D; Loyselle P; Dai L
    Small; 2018 Oct; 14(43):e1800879. PubMed ID: 30009468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping.
    Yu G; Hu L; Liu N; Wang H; Vosgueritchian M; Yang Y; Cui Y; Bao Z
    Nano Lett; 2011 Oct; 11(10):4438-42. PubMed ID: 21942427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating ultrathin and modified NiCoAl-layered double-hydroxide nanosheets with N-doped reduced graphene oxide for high-performance all-solid-state supercapacitors.
    Liu F; Chen Y; Liu Y; Bao J; Han M; Dai Z
    Nanoscale; 2019 May; 11(20):9896-9905. PubMed ID: 31089655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors.
    Feng J; Sun X; Wu C; Peng L; Lin C; Hu S; Yang J; Xie Y
    J Am Chem Soc; 2011 Nov; 133(44):17832-8. PubMed ID: 21951158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors.
    Zhu J; Cao L; Wu Y; Gong Y; Liu Z; Hoster HE; Zhang Y; Zhang S; Yang S; Yan Q; Ajayan PM; Vajtai R
    Nano Lett; 2013; 13(11):5408-13. PubMed ID: 24148090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fe
    Ma Y; Sheng H; Dou W; Su Q; Zhou J; Xie E; Lan W
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41410-41418. PubMed ID: 32877166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphology-controlled MnO2-graphene oxide-diatomaceous earth 3-dimensional (3D) composites for high-performance supercapacitors.
    Wen ZQ; Li M; Li F; Zhu SJ; Liu XY; Zhang YX; Kumeria T; Losic D; Gao Y; Zhang W; He SX
    Dalton Trans; 2016 Jan; 45(3):936-42. PubMed ID: 26645931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vertically Aligned Graphene-Carbon Fiber Hybrid Electrodes with Superlong Cycling Stability for Flexible Supercapacitors.
    Cherusseri J; Sambath Kumar K; Pandey D; Barrios E; Thomas J
    Small; 2019 Oct; 15(44):e1902606. PubMed ID: 31512364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constructed uninterrupted charge-transfer pathways in three-dimensional micro/nanointerconnected carbon-based electrodes for high energy-density ultralight flexible supercapacitors.
    He Y; Chen W; Zhou J; Li X; Tang P; Zhang Z; Fu J; Xie E
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):210-8. PubMed ID: 24325338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemically Integrated Inorganic-Graphene Two-Dimensional Hybrid Materials for Flexible Energy Storage Devices.
    Peng L; Zhu Y; Li H; Yu G
    Small; 2016 Dec; 12(45):6183-6199. PubMed ID: 27758041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.