These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 23590334)

  • 1. Coupled diffusion and abiotic reaction of trichlorethene in minimally disturbed rock matrices.
    Schaefer CE; Towne RM; Lippincott DR; Lazouskaya V; Fischer TB; Bishop ME; Dong H
    Environ Sci Technol; 2013 May; 47(9):4291-8. PubMed ID: 23590334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abiotic dechlorination in rock matrices impacted by long-term exposure to TCE.
    Schaefer CE; Towne RM; Lippincott DR; Lacombe PJ; Bishop ME; Dong H
    Chemosphere; 2015 Jan; 119():744-749. PubMed ID: 25192648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DFN-M field characterization of sandstone for a process-based site conceptual model and numerical simulations of TCE transport with degradation.
    Pierce AA; Chapman SW; Zimmerman LK; Hurley JC; Aravena R; Cherry JA; Parker BL
    J Contam Hydrol; 2018 May; 212():96-114. PubMed ID: 29530334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of rock matrix back-diffusion and abiotic dechlorination using a field testing approach.
    Schaefer CE; Lippincott DR; Klammler H; Hatfield K
    J Contam Hydrol; 2018 Feb; 209():33-41. PubMed ID: 29395375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abiotic dechlorination of chlorinated ethenes in natural clayey soils: Impacts of mineralogy and temperature.
    Schaefer CE; Ho P; Gurr C; Berns E; Werth C
    J Contam Hydrol; 2017 Nov; 206():10-17. PubMed ID: 28965709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusive flux and pore anisotropy in sedimentary rocks.
    Schaefer CE; Towne RM; Lazouskaya V; Bishop ME; Dong H
    J Contam Hydrol; 2012 Apr; 131(1-4):1-8. PubMed ID: 22326688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permanganate diffusion and reaction in sedimentary rocks.
    Huang Q; Dong H; Towne RM; Fischer TB; Schaefer CE
    J Contam Hydrol; 2014 Apr; 159():36-46. PubMed ID: 24566296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion-Coupled Degradation of Chlorinated Ethenes in Sandstone: An Intact Core Microcosm Study.
    Yu R; Andrachek RG; Lehmicke LG; Pierce AA; Parker BL; Cherry JA; Freedman DL
    Environ Sci Technol; 2018 Dec; 52(24):14321-14330. PubMed ID: 30419165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abiotic dechlorination in the presence of ferrous minerals.
    Schaefer CE; Ho P; Berns E; Werth C
    J Contam Hydrol; 2021 Aug; 241():103839. PubMed ID: 34052750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms for Abiotic Dechlorination of Trichloroethene by Ferrous Minerals under Oxic and Anoxic Conditions in Natural Sediments.
    Schaefer CE; Ho P; Berns E; Werth C
    Environ Sci Technol; 2018 Dec; 52(23):13747-13755. PubMed ID: 30394724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vertical cross contamination of trichloroethylene in a borehole in fractured sandstone.
    Sterling SN; Parker BL; Cherry JA; Williams JH; Lane JW; Haeni FP
    Ground Water; 2005; 43(4):557-73. PubMed ID: 16029181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions of biotic and abiotic pathways to anaerobic trichloroethene transformation in low permeability source zones.
    Berns EC; Sanford RA; Valocchi AJ; Strathmann TJ; Schaefer CE; Werth CJ
    J Contam Hydrol; 2019 Jul; 224():103480. PubMed ID: 31006532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ferrous ions on the reductive dechlorination of trichloroethylene by zero-valent iron.
    Liu CC; Tseng DH; Wang CY
    J Hazard Mater; 2006 Aug; 136(3):706-13. PubMed ID: 16504392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competing TCE and cis-DCE degradation kinetics by zero-valent iron-experimental results and numerical simulation.
    Schäfer D; Köber R; Dahmke A
    J Contam Hydrol; 2003 Sep; 65(3-4):183-202. PubMed ID: 12935949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of trichloroethene dechlorination with iron powder.
    Hara J; Ito H; Suto K; Inoue C; Chida T
    Water Res; 2005 Mar; 39(6):1165-73. PubMed ID: 15766971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural attenuation of trichloroethylene in fractured shale bedrock.
    Lenczewski M; Jardine P; McKay L; Layton A
    J Contam Hydrol; 2003 Jul; 64(3-4):151-68. PubMed ID: 12814878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and isotope analyses of tetrachloroethylene and trichloroethylene degradation by model Fe(II)-bearing minerals.
    Liang X; Philp RP; Butler EC
    Chemosphere; 2009 Mar; 75(1):63-9. PubMed ID: 19111888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dechlorination of trichloroethylene formed from 1,1,2,2-tetrachloroethane by dehydrochlorination in Portland cement slurry including Fe(II).
    Jung B; Batchelor B
    Chemosphere; 2008 Mar; 71(4):726-34. PubMed ID: 18068753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilization of bimetallic nanoparticles on microfiltration membranes for trichloroethylene dechlorination.
    Parshetti GK; Doong RA
    Water Sci Technol; 2008; 58(8):1629-36. PubMed ID: 19001718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.