These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 23590334)

  • 21. Dechlorination of trichloroethylene by Ni/Fe nanoparticles immobilized in PEG/PVDF and PEG/nylon 66 membranes.
    Parshetti GK; Doong RA
    Water Res; 2009 Jul; 43(12):3086-94. PubMed ID: 19476967
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chlorinated Ethene Degradation Rate Coefficients Simulated with Intact Sandstone Core Microcosms.
    Yu R; Murdoch LC; Falta RW; Andrachek RG; Pierce AA; Parker BL; Cherry JA; Freedman DL
    Environ Sci Technol; 2020 Dec; 54(24):15829-15839. PubMed ID: 33210923
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Consumption and diffusion of dissolved oxygen in sedimentary rocks.
    Manaka M; Takeda M
    J Contam Hydrol; 2016 Oct; 193():35-47. PubMed ID: 27631678
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers.
    Hunkeler D; Chollet N; Pittet X; Aravena R; Cherry JA; Parker BL
    J Contam Hydrol; 2004 Oct; 74(1-4):265-82. PubMed ID: 15358496
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The complex spatial distribution of trichloroethene and the probability of NAPL occurrence in the rock matrix of a mudstone aquifer.
    Shapiro AM; Goode DJ; Imbrigiotta TE; Lorah MM; Tiedeman CR
    J Contam Hydrol; 2019 Jun; 223():103478. PubMed ID: 31003861
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Porosity and pore size distribution in a sedimentary rock: Implications for the distribution of chlorinated solvents.
    Shapiro AM; Evans CE; Hayes EC
    J Contam Hydrol; 2017 Aug; 203():70-84. PubMed ID: 28693899
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Removal of trichloroethylene DNAPL trapped in porous media using nanoscale zerovalent iron and bimetallic nanoparticles: direct observation and quantification.
    Wang Q; Jeong SW; Choi H
    J Hazard Mater; 2012 Apr; 213-214():299-310. PubMed ID: 22386819
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of iron surface pretreatment on sorption and reduction kinetics of trichloroethylene in a closed batch system.
    Jung Lin C; Lo SL
    Water Res; 2005 Mar; 39(6):1037-46. PubMed ID: 15766958
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of membrane immobilization on particle formation and trichloroethylene dechlorination for bimetallic Fe/Ni nanoparticles in cellulose acetate membranes.
    Meyer DE; Bhattacharyya D
    J Phys Chem B; 2007 Jun; 111(25):7142-54. PubMed ID: 17530798
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soils.
    Katsenovich YP; Miralles-Wilhelm FR
    Sci Total Environ; 2009 Sep; 407(18):4986-93. PubMed ID: 19570566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Treatment of trichloroethene and hexavalent chromium by granular iron in the presence of dissolved CaCO3.
    Jeen SW; Yang Y; Gui L; Gillham RW
    J Contam Hydrol; 2013 Jan; 144(1):108-21. PubMed ID: 23247400
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion.
    Liang C; Bruell CJ; Marley MC; Sperry KL
    Chemosphere; 2004 Jun; 55(9):1225-33. PubMed ID: 15081763
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity.
    Parker BL; Cherry JA; Chapman SW
    J Contam Hydrol; 2004 Oct; 74(1-4):197-230. PubMed ID: 15358493
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple.
    Liang C; Bruell CJ; Marley MC; Sperry KL
    Chemosphere; 2004 Jun; 55(9):1213-23. PubMed ID: 15081762
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reductive dechlorination of PCE and TCE by vitamin B12 and ZVMs.
    Kim YH; Carraway ER
    Environ Technol; 2002 Oct; 23(10):1135-45. PubMed ID: 12465840
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon isotope fractionation during reductive dechlorination of TCE in batch experiments with iron samples from reactive barriers.
    Schüth C; Bill M; Barth JA; Slater GF; Kalin RM
    J Contam Hydrol; 2003 Oct; 66(1-2):25-37. PubMed ID: 14516939
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-inhibition can limit biologically enhanced TCE dissolution from a TCE DNAPL.
    Haest PJ; Springael D; Seuntjens P; Smolders E
    Chemosphere; 2012 Nov; 89(11):1369-75. PubMed ID: 22749126
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electron donor limitations reduce microbial enhanced trichloroethene DNAPL dissolution: a flux-based analysis using diffusion-cells.
    Philips J; Van Muylder R; Springael D; Smolders E
    Chemosphere; 2013 Mar; 91(1):7-13. PubMed ID: 23228910
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dechlorination of chlorinated hydrocarbons by bimetallic Ni/Fe immobilized on polyethylene glycol-grafted microfiltration membranes under anoxic conditions.
    Parshetti GK; Doong RA
    Chemosphere; 2012 Jan; 86(4):392-9. PubMed ID: 22115467
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Iron and organo-bentonite for the reduction and sorption of trichloroethylene.
    Cho HH; Lee T; Hwang SJ; Park JW
    Chemosphere; 2005 Jan; 58(1):103-8. PubMed ID: 15522338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.