BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 23590432)

  • 1. Coagulation kinetics of humic aggregates in mono- and di-valent electrolyte solutions.
    Wang LF; Wang LL; Ye XD; Li WW; Ren XM; Sheng GP; Yu HQ; Wang XK
    Environ Sci Technol; 2013 May; 47(10):5042-9. PubMed ID: 23590432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions.
    Chen KL; Elimelech M
    J Colloid Interface Sci; 2007 May; 309(1):126-34. PubMed ID: 17331529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications.
    Saleh NB; Pfefferle LD; Elimelech M
    Environ Sci Technol; 2008 Nov; 42(21):7963-9. PubMed ID: 19031888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aqueous aggregation behavior of citric acid coated magnetite nanoparticles: Effects of pH, cations, anions, and humic acid.
    Liu J; Dai C; Hu Y
    Environ Res; 2018 Feb; 161():49-60. PubMed ID: 29101829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coagulation behavior of humic acid in aqueous solutions containing Cs
    Tan L; Tan X; Mei H; Ai Y; Sun L; Zhao G; Hayat T; Alsaedi A; Chen C; Wang X
    Environ Pollut; 2018 May; 236():835-843. PubMed ID: 29462778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions.
    Huynh KA; Chen KL
    Environ Sci Technol; 2011 Jul; 45(13):5564-71. PubMed ID: 21630686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregation kinetics of microplastics in aquatic environment: Complex roles of electrolytes, pH, and natural organic matter.
    Li S; Liu H; Gao R; Abdurahman A; Dai J; Zeng F
    Environ Pollut; 2018 Jun; 237():126-132. PubMed ID: 29482018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes.
    Saleh NB; Pfefferle LD; Elimelech M
    Environ Sci Technol; 2010 Apr; 44(7):2412-8. PubMed ID: 20184360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coagulation characteristics of humic acid modified with glucosamine or taurine.
    Terashima M; Tanaka S; Fukushima M
    Chemosphere; 2007 Sep; 69(2):240-6. PubMed ID: 17512967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of molecular weight-dependent physicochemical heterogeneity of natural organic matter on the aggregation of fullerene nanoparticles in mono- and di-valent electrolyte solutions.
    Shen MH; Yin YG; Booth A; Liu JF
    Water Res; 2015 Mar; 71():11-20. PubMed ID: 25577691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ionic strength and temperature on the aggregation and deposition of multi-walled carbon nanotubes.
    Wang L; Yang X; Wang Q; Zeng Y; Ding L; Jiang W
    J Environ Sci (China); 2017 Jan; 51():248-255. PubMed ID: 28115136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colloidal stability and aggregation kinetics of biochar colloids: Effects of pyrolysis temperature, cation type, and humic acid concentrations.
    Yang W; Shang J; Sharma P; Li B; Liu K; Flury M
    Sci Total Environ; 2019 Mar; 658():1306-1315. PubMed ID: 30677992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of extracellular polymeric substances on the aggregation kinetics of TiO
    Lin D; Drew Story S; Walker SL; Huang Q; Cai P
    Water Res; 2016 Nov; 104():381-388. PubMed ID: 27576157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aggregation kinetics of fragmental PET nanoplastics in aqueous environment: Complex roles of electrolytes, pH and humic acid.
    Dong S; Cai W; Xia J; Sheng L; Wang W; Liu H
    Environ Pollut; 2021 Jan; 268(Pt B):115828. PubMed ID: 33120151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of natural organic matter on aggregation kinetics of boron nanoparticles in monovalent and divalent electrolytes.
    Liu X; Wazne M; Han Y; Christodoulatos C; Jasinkiewicz KL
    J Colloid Interface Sci; 2010 Aug; 348(1):101-7. PubMed ID: 20483427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coagulation of humic substances and dissolved organic matter with a ferric salt: an electron energy loss spectroscopy investigation.
    Jung AV; Chanudet V; Ghanbaja J; Lartiges BS; Bersillon JL
    Water Res; 2005 Oct; 39(16):3849-62. PubMed ID: 16112165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of electrolyte and poloxamer 188 on the aggregation kinetics of solid lipid nanoparticles (SLNs).
    Wei CC; Ge ZQ
    Drug Dev Ind Pharm; 2012 Sep; 38(9):1084-9. PubMed ID: 22181005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability and sedimentation of silver nanoparticles in the presence of monovalent, divalent and trivalent electrolyte solutions.
    Chen SF; Zhang H
    Water Sci Technol; 2014; 70(2):361-6. PubMed ID: 25051485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic heteroaggregation of gold nanoparticles in a wide range of solution chemistry.
    Afrooz AR; Khan IA; Hussain SM; Saleh NB
    Environ Sci Technol; 2013 Feb; 47(4):1853-60. PubMed ID: 23360522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aggregation kinetics of different surface-modified polystyrene nanoparticles in monovalent and divalent electrolytes.
    Yu S; Shen M; Li S; Fu Y; Zhang D; Liu H; Liu J
    Environ Pollut; 2019 Dec; 255(Pt 2):113302. PubMed ID: 31597113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.