These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 23590516)
1. Global dynamics of the Escherichia coli proteome and phosphoproteome during growth in minimal medium. Soares NC; Spät P; Krug K; Macek B J Proteome Res; 2013 Jun; 12(6):2611-21. PubMed ID: 23590516 [TBL] [Abstract][Full Text] [Related]
2. Quantitative proteomics reveals significant changes in cell shape and an energy shift after IPTG induction via an optimized SILAC approach for Escherichia coli. Ping L; Zhang H; Zhai L; Dammer EB; Duong DM; Li N; Yan Z; Wu J; Xu P J Proteome Res; 2013 Dec; 12(12):5978-88. PubMed ID: 24224529 [TBL] [Abstract][Full Text] [Related]
3. Impact of rpoS deletion on the proteome of Escherichia coli grown planktonically and as biofilm. Collet A; Cosette P; Beloin C; Ghigo JM; Rihouey C; Lerouge P; Junter GA; Jouenne T J Proteome Res; 2008 Nov; 7(11):4659-69. PubMed ID: 18826300 [TBL] [Abstract][Full Text] [Related]
4. Systematic profiling of the bacterial phosphoproteome reveals bacterium-specific features of phosphorylation. Lin MH; Sugiyama N; Ishihama Y Sci Signal; 2015 Sep; 8(394):rs10. PubMed ID: 26373674 [TBL] [Abstract][Full Text] [Related]
5. Quantitative proteome and phosphoproteome analyses of cultured cells based on SILAC labeling without requirement of serum dialysis. Imami K; Sugiyama N; Tomita M; Ishihama Y Mol Biosyst; 2010 Mar; 6(3):594-602. PubMed ID: 20174688 [TBL] [Abstract][Full Text] [Related]
6. Global analysis of phosphoproteome regulation by the Ser/Thr phosphatase Ppt1 in Saccharomyces cerevisiae. Schreiber TB; Mäusbacher N; Soroka J; Wandinger SK; Buchner J; Daub H J Proteome Res; 2012 Apr; 11(4):2397-408. PubMed ID: 22369663 [TBL] [Abstract][Full Text] [Related]
7. Proteome reallocation in Escherichia coli with increasing specific growth rate. Peebo K; Valgepea K; Maser A; Nahku R; Adamberg K; Vilu R Mol Biosyst; 2015 Apr; 11(4):1184-93. PubMed ID: 25712329 [TBL] [Abstract][Full Text] [Related]
8. Stable isotope labeling by amino acids in cell culture (SILAC) applied to quantitative proteomics of Bacillus subtilis. Soufi B; Kumar C; Gnad F; Mann M; Mijakovic I; Macek B J Proteome Res; 2010 Jul; 9(7):3638-46. PubMed ID: 20509597 [TBL] [Abstract][Full Text] [Related]
9. Phosphoproteomic analysis reveals the multiple roles of phosphorylation in pathogenic bacterium Streptococcus pneumoniae. Sun X; Ge F; Xiao CL; Yin XF; Ge R; Zhang LH; He QY J Proteome Res; 2010 Jan; 9(1):275-82. PubMed ID: 19894762 [TBL] [Abstract][Full Text] [Related]
10. Quantitative phosphoproteome analysis of Bacillus subtilis reveals novel substrates of the kinase PrkC and phosphatase PrpC. Ravikumar V; Shi L; Krug K; Derouiche A; Jers C; Cousin C; Kobir A; Mijakovic I; Macek B Mol Cell Proteomics; 2014 Aug; 13(8):1965-78. PubMed ID: 24390483 [TBL] [Abstract][Full Text] [Related]
11. The Ser/Thr/Tyr phosphoproteome of Lactococcus lactis IL1403 reveals multiply phosphorylated proteins. Soufi B; Gnad F; Jensen PR; Petranovic D; Mann M; Mijakovic I; Macek B Proteomics; 2008 Sep; 8(17):3486-93. PubMed ID: 18668697 [TBL] [Abstract][Full Text] [Related]
12. Phosphoproteome analysis of HeLa cells using stable isotope labeling with amino acids in cell culture (SILAC). Amanchy R; Kalume DE; Iwahori A; Zhong J; Pandey A J Proteome Res; 2005; 4(5):1661-71. PubMed ID: 16212419 [TBL] [Abstract][Full Text] [Related]
13. Quantitative phosphoproteomics of transforming growth factor-β signaling in colon cancer cells. Ali NA; Molloy MP Proteomics; 2011 Aug; 11(16):3390-401. PubMed ID: 21751366 [TBL] [Abstract][Full Text] [Related]
14. Quantitative proteome and phosphoproteome analysis of human pluripotent stem cells. Muñoz J; Heck AJ Methods Mol Biol; 2011; 767():297-312. PubMed ID: 21822884 [TBL] [Abstract][Full Text] [Related]
15. Phosphoproteome analysis of the pathogenic bacterium Helicobacter pylori reveals over-representation of tyrosine phosphorylation and multiply phosphorylated proteins. Ge R; Sun X; Xiao C; Yin X; Shan W; Chen Z; He QY Proteomics; 2011 Apr; 11(8):1449-61. PubMed ID: 21360674 [TBL] [Abstract][Full Text] [Related]
16. Classification and strength measurement of stationary-phase promoters by use of a newly developed promoter cloning vector. Shimada T; Makinoshima H; Ogawa Y; Miki T; Maeda M; Ishihama A J Bacteriol; 2004 Nov; 186(21):7112-22. PubMed ID: 15489422 [TBL] [Abstract][Full Text] [Related]
17. Comparative analysis of transcriptional regulatory elements of glutamate-dependent acid-resistance systems of Shigella flexneri and Escherichia coli O157:H7. Bhagwat AA; Bhagwat M FEMS Microbiol Lett; 2004 May; 234(1):139-47. PubMed ID: 15109732 [TBL] [Abstract][Full Text] [Related]
18. Global dynamics of Escherichia coli phosphoproteome in central carbon metabolism under changing culture conditions. Lim S; Marcellin E; Jacob S; Nielsen LK J Proteomics; 2015 Aug; 126():24-33. PubMed ID: 26013414 [TBL] [Abstract][Full Text] [Related]
19. Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation. Macek B; Gnad F; Soufi B; Kumar C; Olsen JV; Mijakovic I; Mann M Mol Cell Proteomics; 2008 Feb; 7(2):299-307. PubMed ID: 17938405 [TBL] [Abstract][Full Text] [Related]
20. SigmaS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of sigmaS-dependent genes and identification of their promoter sequences. Lacour S; Landini P J Bacteriol; 2004 Nov; 186(21):7186-95. PubMed ID: 15489429 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]