BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23590517)

  • 1. Microfluidic chemical cytometry of peptide degradation in single drug-treated acute myeloid leukemia cells.
    Kovarik ML; Shah PK; Armistead PM; Allbritton NL
    Anal Chem; 2013 May; 85(10):4991-7. PubMed ID: 23590517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response of single leukemic cells to peptidase inhibitor therapy across time and dose using a microfluidic device.
    Kovarik ML; Dickinson AJ; Roy P; Poonnen RA; Fine JP; Allbritton NL
    Integr Biol (Camb); 2014 Feb; 6(2):164-74. PubMed ID: 24413844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dielectrophoretic Microfluidic Chip Enables Single-Cell Measurements for Multidrug Resistance in Heterogeneous Acute Myeloid Leukemia Patient Samples.
    Khamenehfar A; Gandhi MK; Chen Y; Hogge DE; Li PC
    Anal Chem; 2016 Jun; 88(11):5680-8. PubMed ID: 27149245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aminopeptidase inhibition by the novel agent CHR-2797 (tosedostat) for the therapy of acute myeloid leukemia.
    Jenkins C; Hewamana S; Krige D; Pepper C; Burnett A
    Leuk Res; 2011 May; 35(5):677-81. PubMed ID: 21145592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting acute myeloid leukemia with a proapoptotic peptide conjugated to a Toll-like receptor 2-mediated cell-penetrating peptide.
    Li K; Lv XX; Hua F; Lin H; Sun W; Cao WB; Fu XM; Xie J; Yu JJ; Li Z; Liu H; Han MZ; Hu ZW
    Int J Cancer; 2014 Feb; 134(3):692-702. PubMed ID: 23852533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mimicking the Acute Myeloid Leukemia Niche for Molecular Study and Drug Screening.
    Houshmand M; Soleimani M; Atashi A; Saglio G; Abdollahi M; Nikougoftar Zarif M
    Tissue Eng Part C Methods; 2017 Feb; 23(2):72-85. PubMed ID: 28007011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p70S6 kinase is a target of the novel proteasome inhibitor 3,3'-diamino-4'-methoxyflavone during apoptosis in human myeloid tumor cells.
    Piedfer M; Bouchet S; Tang R; Billard C; Dauzonne D; Bauvois B
    Biochim Biophys Acta; 2013 Jun; 1833(6):1316-28. PubMed ID: 23481040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of specific and biologically active peptides that bind cells from patients with acute myeloid leukemia (AML).
    Galili N; Devemy E; Raza A
    J Hematol Oncol; 2008 Jul; 1():8. PubMed ID: 18616802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lanthanide-doped nanoparticles conjugated with an anti-CD33 antibody and a p53-activating peptide for acute myeloid leukemia therapy.
    Niu F; Yan J; Ma B; Li S; Shao Y; He P; Zhang W; He W; Ma PX; Lu W
    Biomaterials; 2018 Jun; 167():132-142. PubMed ID: 29571049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein targeting chimeric molecules specific for dual bromodomain 4 (BRD4) and Polo-like kinase 1 (PLK1) proteins in acute myeloid leukemia cells.
    Mu X; Bai L; Xu Y; Wang J; Lu H
    Biochem Biophys Res Commun; 2020 Jan; 521(4):833-839. PubMed ID: 31708096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Curcumin reduces expression of Bcl-2, leading to apoptosis in daunorubicin-insensitive CD34+ acute myeloid leukemia cell lines and primary sorted CD34+ acute myeloid leukemia cells.
    Rao J; Xu DR; Zheng FM; Long ZJ; Huang SS; Wu X; Zhou WH; Huang RW; Liu Q
    J Transl Med; 2011 May; 9():71. PubMed ID: 21595920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time detection and monitoring of the drug resistance of single myeloid leukemia cells by diffused total internal reflection.
    Liang L; Jin YX; Zhu XQ; Zhou FL; Yang Y
    Lab Chip; 2018 May; 18(10):1422-1429. PubMed ID: 29713720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoformulation of EPZ011989 Attenuates EZH2-c-Myb Epigenetic Interaction by Proteasomal Degradation in Acute Myeloid Leukemia.
    Kaundal B; Srivastava AK; Dev A; Mohanbhai SJ; Karmakar S; Roy Choudhury S
    Mol Pharm; 2020 Feb; 17(2):604-621. PubMed ID: 31904978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of a novel Nrf2 inhibitor that induces apoptosis of human acute myeloid leukemia cells.
    Zhang J; Su L; Ye Q; Zhang S; Kung H; Jiang F; Jiang G; Miao J; Zhao B
    Oncotarget; 2017 Jan; 8(5):7625-7636. PubMed ID: 28032588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards an Endpoint Cell Motility Assay by a Microfluidic Platform.
    Yeh CF; Tai W; Lin CH; Juang DS; Wu CC; Chen YW; Hsu CH
    IEEE Trans Nanobioscience; 2015 Dec; 14(8):835-40. PubMed ID: 26415207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytotoxic activity to acute myeloid leukemia cells by Antp-TPR hybrid peptide targeting Hsp90.
    Horibe T; Kawamoto M; Kohno M; Kawakami K
    J Biosci Bioeng; 2012 Jul; 114(1):96-103. PubMed ID: 22425524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomarkers for RBM39 degradation in acute myeloid leukemia.
    Hsiehchen D; Goralski M; Kim J; Xie Y; Nijhawan D
    Leukemia; 2020 Jul; 34(7):1924-1928. PubMed ID: 32042080
    [No Abstract]   [Full Text] [Related]  

  • 18. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin.
    Du J; Wang T; Li Y; Zhou Y; Wang X; Yu X; Ren X; An Y; Wu Y; Sun W; Fan W; Zhu Q; Wang Y; Tong X
    Free Radic Biol Med; 2019 Feb; 131():356-369. PubMed ID: 30557609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SS30, a novel thioaptamer targeting CD123, inhibits the growth of acute myeloid leukemia cells.
    Wang M; Wu H; Duan M; Yang Y; Wang G; Che F; Liu B; He W; Li Q; Zhang L
    Life Sci; 2019 Sep; 232():116663. PubMed ID: 31323275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mebendazole exhibits potent anti-leukemia activity on acute myeloid leukemia.
    He L; Shi L; Du Z; Huang H; Gong R; Ma L; Chen L; Gao S; Lyu J; Gu H
    Exp Cell Res; 2018 Aug; 369(1):61-68. PubMed ID: 29750898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.