These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 23590586)

  • 1. Molecular assembly of zinc chlorophyll derivatives by using recombinant light-harvesting polypeptides with His-tag and immobilization on a gold electrode.
    Sakai S; Noji T; Kondo M; Mizuno T; Dewa T; Ochiai T; Yamakawa H; Itoh S; Hashimoto H; Nango M
    Langmuir; 2013 Apr; 29(17):5104-9. PubMed ID: 23590586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photocurrent and electronic activities of oriented-His-tagged photosynthetic light-harvesting/reaction center core complexes assembled onto a gold electrode.
    Kondo M; Iida K; Dewa T; Tanaka H; Ogawa T; Nagashima S; Nagashima KV; Shimada K; Hashimoto H; Gardiner AT; Cogdell RJ; Nango M
    Biomacromolecules; 2012 Feb; 13(2):432-8. PubMed ID: 22239547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of porphyrin derivatives with a defined distance and orientation onto a gold electrode using synthetic light-harvesting α-helix hydrophobic polypeptides.
    Ochiai T; Nagata M; Shimoyama K; Amano M; Kondo M; Dewa T; Hashimoto H; Nango M
    Langmuir; 2010 Sep; 26(18):14419-22. PubMed ID: 20735025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and expression of cysteine-bearing hydrophobic polypeptides and their self-assembling properties with bacteriochlorophyll a derivatives as a mimic of bacterial photosynthetic antenna complexes. Effect of steric confinement and orientation of the polypeptides on the pigment/polypeptide assembly process.
    Dewa T; Yamada T; Ogawa M; Sugimoto M; Mizuno T; Yoshida K; Nakao Y; Kondo M; Iida K; Yamashita K; Tanaka T; Nango M
    Biochemistry; 2005 Apr; 44(13):5129-39. PubMed ID: 15794650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro reconstitution of the core and peripheral light-harvesting complexes of Rhodospirillum molischianum from separately isolated components.
    Todd JB; Parkes-Loach PS; Leykam JF; Loach PA
    Biochemistry; 1998 Dec; 37(50):17458-68. PubMed ID: 9860861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstitution of core light-harvesting complexes of photosynthetic bacteria using chemically synthesized polypeptides. 2. Determination of structural features that stabilize complex formation and their implications for the structure of the subunit complex.
    Kehoe JW; Meadows KA; Parkes-Loach PS; Loach PA
    Biochemistry; 1998 Mar; 37(10):3418-28. PubMed ID: 9521663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution structures of the core light-harvesting alpha and beta polypeptides from Rhodospirillum rubrum: implications for the pigment-protein and protein-protein interactions.
    Wang ZY; Gokan K; Kobayashi M; Nozawa T
    J Mol Biol; 2005 Mar; 347(2):465-77. PubMed ID: 15740753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the structural requirements for bacteriochlorophyll binding in the core light-harvesting complexes of Rhodospirillum rubrum and Rhodospirillum sphaeroides using reconstitution methodology with bacteriochlorophyll analogs.
    Davis CM; Parkes-Loach PS; Cook CK; Meadows KA; Bandilla M; Scheer H; Loach PA
    Biochemistry; 1996 Mar; 35(9):3072-84. PubMed ID: 8608148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstitution of core light-harvesting complexes of photosynthetic bacteria using chemically synthesized polypeptides. 1. Minimal requirements for subunit formation.
    Meadows KA; Parkes-Loach PS; Kehoe JW; Loach PA
    Biochemistry; 1998 Mar; 37(10):3411-7. PubMed ID: 9521662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic and chemical cleavage of the core light-harvesting polypeptides of photosynthetic bacteria: determination of the minimal polypeptide size and structure required for subunit and light-harvesting complex formation.
    Meadows KA; Iida K; Tsuda K; Recchia PA; Heller BA; Antonio B; Nango M; Loach PA
    Biochemistry; 1995 Feb; 34(5):1559-74. PubMed ID: 7849015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced photocurrent generation by photosynthetic bacterial reaction centers through molecular relays, light-harvesting complexes, and direct protein-gold interactions.
    den Hollander MJ; Magis JG; Fuchsenberger P; Aartsma TJ; Jones MR; Frese RN
    Langmuir; 2011 Aug; 27(16):10282-94. PubMed ID: 21728318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The PufX protein of Rhodobacter capsulatus affects the properties of bacteriochlorophyll a and carotenoid pigments of light-harvesting complex 1.
    Aklujkar M; Beatty JT
    Arch Biochem Biophys; 2005 Nov; 443(1-2):21-32. PubMed ID: 16212932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of structure-function relationships in the core light-harvesting complex of photosynthetic bacteria by reconstitution with mutant polypeptides.
    Davis CM; Bustamante PL; Todd JB; Parkes-Loach PS; McGlynn P; Olsen JD; McMaster L; Hunter CN; Loach PA
    Biochemistry; 1997 Mar; 36(12):3671-9. PubMed ID: 9132020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular assembly of Zn porphyrin complexes using synthetic light-harvesting model polypeptides.
    Ochiai T; Asaoka T; Kato T; Osaka S; Dewa T; Yamashita K; Gardiner AT; Hashimoto H; Nango M
    Photosynth Res; 2008; 95(2-3):353-61. PubMed ID: 18049908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembled monolayer of light-harvesting core complexes from photosynthetic bacteria on a gold electrode modified with alkanethiols.
    Kondo M; Nakamura Y; Fujii K; Nagata M; Suemori Y; Dewa T; Iida K; Gardiner AT; Cogdell RJ; Nango M
    Biomacromolecules; 2007 Aug; 8(8):2457-63. PubMed ID: 17591750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-Dimensional Molecular Assembly of Bacteriochlorophyll
    Ochiai T; Nagata M; Shimoyama K; Kato T; Asaoka T; Kondo M; Dewa T; Yamashita K; Kashiwada A; Futaki S; Hashimoto H; Nango M
    ACS Macro Lett; 2012 Jan; 1(1):28-32. PubMed ID: 35578447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biohybrid photosynthetic antenna complexes for enhanced light-harvesting.
    Springer JW; Parkes-Loach PS; Reddy KR; Krayer M; Jiao J; Lee GM; Niedzwiedzki DM; Harris MA; Kirmaier C; Bocian DF; Lindsey JS; Holten D; Loach PA
    J Am Chem Soc; 2012 Mar; 134(10):4589-99. PubMed ID: 22375881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. C-terminal cleavage of the LH1 α-polypeptide in the Sr
    Kimura Y; Kawakami T; Arikawa T; Li Y; Yu LJ; Ohno T; Madigan MT; Wang-Otomo ZY
    Photosynth Res; 2018 Mar; 135(1-3):23-31. PubMed ID: 28493058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cathodic photocurrent generation from zinc-substituted cytochrome b562 assemblies immobilized on an apocytochrome b562-modified gold electrode.
    Onoda A; Kakikura Y; Hayashi T
    Dalton Trans; 2013 Dec; 42(45):16102-7. PubMed ID: 24002580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photochemistry of free and bound Zn-chlorophyll analogues to synthetic peptides depend on the quinone and pH.
    Razeghifard R
    J Photochem Photobiol B; 2015 Nov; 152(Pt B):416-24. PubMed ID: 26232025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.