These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 23590997)
1. A biophysical approach to menadione membrane interactions: relevance for menadione-induced mitochondria dysfunction and related deleterious/therapeutic effects. Monteiro JP; Martins AF; Nunes C; Morais CM; Lúcio M; Reis S; Pinheiro TJ; Geraldes CF; Oliveira PJ; Jurado AS Biochim Biophys Acta; 2013 Aug; 1828(8):1899-908. PubMed ID: 23590997 [TBL] [Abstract][Full Text] [Related]
2. Nimesulide interaction with membrane model systems: are membrane physical effects involved in nimesulide mitochondrial toxicity? Monteiro JP; Martins AF; Lúcio M; Reis S; Pinheiro TJ; Geraldes CF; Oliveira PJ; Jurado AS Toxicol In Vitro; 2011 Sep; 25(6):1215-23. PubMed ID: 21645611 [TBL] [Abstract][Full Text] [Related]
3. Effect of ubiquinone-10 on the stability of biomimetic membranes of relevance for the inner mitochondrial membrane. Eriksson EK; Agmo Hernández V; Edwards K Biochim Biophys Acta Biomembr; 2018 May; 1860(5):1205-1215. PubMed ID: 29470946 [TBL] [Abstract][Full Text] [Related]
4. Interaction of carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) with lipid membrane systems: a biophysical approach with relevance to mitochondrial uncoupling. Monteiro JP; Martins AF; Lúcio M; Reis S; Geraldes CF; Oliveira PJ; Jurado AS J Bioenerg Biomembr; 2011 Jun; 43(3):287-98. PubMed ID: 21607731 [TBL] [Abstract][Full Text] [Related]
5. riDOM, a cell penetrating peptide. Interaction with phospholipid bilayers. Québatte G; Kitas E; Seelig J Biochim Biophys Acta; 2014 Mar; 1838(3):968-77. PubMed ID: 24184424 [TBL] [Abstract][Full Text] [Related]
6. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids. Maherani B; Arab-Tehrany E; Kheirolomoom A; Geny D; Linder M Biochimie; 2013 Nov; 95(11):2018-33. PubMed ID: 23871914 [TBL] [Abstract][Full Text] [Related]
7. Calcein permeation across phosphatidylcholine bilayer membrane: effects of membrane fluidity, liposome size, and immobilization. Shimanouchi T; Ishii H; Yoshimoto N; Umakoshi H; Kuboi R Colloids Surf B Biointerfaces; 2009 Oct; 73(1):156-60. PubMed ID: 19560324 [TBL] [Abstract][Full Text] [Related]
8. Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes. Pankov R; Markovska T; Antonov P; Ivanova L; Momchilova A Gen Physiol Biophys; 2006 Sep; 25(3):313-24. PubMed ID: 17197729 [TBL] [Abstract][Full Text] [Related]
9. Lysolipid incorporation in dipalmitoylphosphatidylcholine bilayer membranes enhances the ion permeability and drug release rates at the membrane phase transition. Mills JK; Needham D Biochim Biophys Acta; 2005 Oct; 1716(2):77-96. PubMed ID: 16216216 [TBL] [Abstract][Full Text] [Related]
10. Effects of lipid chain length on molecular interactions between paclitaxel and phospholipid within model biomembranes. Zhao L; Feng SS J Colloid Interface Sci; 2004 Jun; 274(1):55-68. PubMed ID: 15120278 [TBL] [Abstract][Full Text] [Related]
11. Apoptotic Bax at Oxidatively Stressed Mitochondrial Membranes: Lipid Dynamics and Permeabilization. Dingeldein APG; Pokorná Š; Lidman M; Sparrman T; Šachl R; Hof M; Gröbner G Biophys J; 2017 May; 112(10):2147-2158. PubMed ID: 28538152 [TBL] [Abstract][Full Text] [Related]
12. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232 [TBL] [Abstract][Full Text] [Related]
13. Effects of the anti-neoplastic agent ET-18-OCH3 and some analogs on the biophysical properties of model membranes. Torrecillas A; Aroca-Aguilar JD; Aranda FJ; Gajate C; Mollinedo F; Corbalán-García S; de Godos A; Gómez-Fernández JC Int J Pharm; 2006 Aug; 318(1-2):28-40. PubMed ID: 16624506 [TBL] [Abstract][Full Text] [Related]
16. Changes induced by malathion, methylparathion and parathion on membrane lipid physicochemical properties correlate with their toxicity. Videira RA; Antunes-Madeira MC; Lopes VI; Madeira VM Biochim Biophys Acta; 2001 Apr; 1511(2):360-8. PubMed ID: 11286979 [TBL] [Abstract][Full Text] [Related]
17. Amyloid-β and the failure to form mitochondrial cristae: a biomimetic study involving artificial membranes. Khalifat N; Puff N; Dliaa M; Angelova MI J Alzheimers Dis; 2012; 28(1):33-48. PubMed ID: 21987591 [TBL] [Abstract][Full Text] [Related]
18. Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus. Valcarcel CA; Dalla Serra M; Potrich C; Bernhart I; Tejuca M; Martinez D; Pazos F; Lanio ME; Menestrina G Biophys J; 2001 Jun; 80(6):2761-74. PubMed ID: 11371451 [TBL] [Abstract][Full Text] [Related]
19. Plant pentacyclic triterpenic acids as modulators of lipid membrane physical properties. Prades J; Vögler O; Alemany R; Gomez-Florit M; Funari SS; Ruiz-Gutiérrez V; Barceló F Biochim Biophys Acta; 2011 Mar; 1808(3):752-60. PubMed ID: 21167812 [TBL] [Abstract][Full Text] [Related]
20. Ethylazinphos interaction with membrane lipid organization induces increase of proton permeability and impairment of mitochondrial bioenergetic functions. Videira RA; Antunes-Madeira MC; Madeira VM Toxicol Appl Pharmacol; 2001 Sep; 175(3):209-16. PubMed ID: 11559019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]