These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 23590997)
21. Characterization of hydrophobic interaction and antioxidant properties of the phenothiazine nucleus in mitochondrial and model membranes. Borges MB; Dos Santos CG; Yokomizo CH; Sood R; Vitovic P; Kinnunen PK; Rodrigues T; Nantes IL Free Radic Res; 2010 Sep; 44(9):1054-63. PubMed ID: 20815768 [TBL] [Abstract][Full Text] [Related]
22. Lipid dependence of diadinoxanthin solubilization and de-epoxidation in artificial membrane systems resembling the lipid composition of the natural thylakoid membrane. Goss R; Latowski D; Grzyb J; Vieler A; Lohr M; Wilhelm C; Strzalka K Biochim Biophys Acta; 2007 Jan; 1768(1):67-75. PubMed ID: 16843433 [TBL] [Abstract][Full Text] [Related]
23. The effect of peptide/lipid hydrophobic mismatch on the phase behavior of model membranes mimicking the lipid composition in Escherichia coli membranes. Morein S; Koeppe II RE; Lindblom G; de Kruijff B; Killian JA Biophys J; 2000 May; 78(5):2475-85. PubMed ID: 10777744 [TBL] [Abstract][Full Text] [Related]
24. Vitamin E distribution and modulation of the physical state and function of pulmonary endothelial cell membranes. Patel JM; Sekharam M; Block ER Exp Lung Res; 1991; 17(4):707-23. PubMed ID: 1935832 [TBL] [Abstract][Full Text] [Related]
25. Phosphatidylethanolamine enhances rhodopsin photoactivation and transducin binding in a solid supported lipid bilayer as determined using plasmon-waveguide resonance spectroscopy. Alves ID; Salgado GF; Salamon Z; Brown MF; Tollin G; Hruby VJ Biophys J; 2005 Jan; 88(1):198-210. PubMed ID: 15501933 [TBL] [Abstract][Full Text] [Related]
26. Effect of N-methylation of phosphatidylethanolamine on the fluidity of phospholipid bilayers. Mio M; Okamoto M; Akagi M; Tasaka K Biochem Biophys Res Commun; 1984 May; 120(3):989-95. PubMed ID: 6732794 [TBL] [Abstract][Full Text] [Related]
29. Evidence of proteolipid domain formation in an inner mitochondrial membrane mimicking model. Cheniour M; Brewer J; Bagatolli L; Marcillat O; Granjon T Biochim Biophys Acta Gen Subj; 2017 May; 1861(5 Pt A):969-976. PubMed ID: 28185927 [TBL] [Abstract][Full Text] [Related]
30. Probability of alamethicin conductance states varies with nonlamellar tendency of bilayer phospholipids. Keller SL; Bezrukov SM; Gruner SM; Tate MW; Vodyanoy I; Parsegian VA Biophys J; 1993 Jul; 65(1):23-7. PubMed ID: 8369434 [TBL] [Abstract][Full Text] [Related]
31. Electrogenic and nonelectrogenic ion fluxes across lipid and mitochondrial membranes mediated by monensin and monensin ethyl ester. Antonenko YN; Rokitskaya TI; Huczyński A Biochim Biophys Acta; 2015 Apr; 1848(4):995-1004. PubMed ID: 25600660 [TBL] [Abstract][Full Text] [Related]
32. Distinct membrane properties are differentially influenced by cardiolipin content and acyl chain composition in biomimetic membranes. Pennington ER; Fix A; Sullivan EM; Brown DA; Kennedy A; Shaikh SR Biochim Biophys Acta Biomembr; 2017 Feb; 1859(2):257-267. PubMed ID: 27889304 [TBL] [Abstract][Full Text] [Related]
33. Interactions of oritavancin, a new lipoglycopeptide derived from vancomycin, with phospholipid bilayers: Effect on membrane permeability and nanoscale lipid membrane organization. Domenech O; Francius G; Tulkens PM; Van Bambeke F; Dufrêne Y; Mingeot-Leclercq MP Biochim Biophys Acta; 2009 Sep; 1788(9):1832-40. PubMed ID: 19450541 [TBL] [Abstract][Full Text] [Related]
34. Revealing cardiolipins influence in the construction of a significant mitochondrial membrane model. Lopes SC; Ivanova G; de Castro B; Gameiro P Biochim Biophys Acta Biomembr; 2018 Nov; 1860(11):2465-2477. PubMed ID: 30040925 [TBL] [Abstract][Full Text] [Related]
35. S4(13)-PV cell-penetrating peptide induces physical and morphological changes in membrane-mimetic lipid systems and cell membranes: implications for cell internalization. Cardoso AM; Trabulo S; Cardoso AL; Lorents A; Morais CM; Gomes P; Nunes C; Lúcio M; Reis S; Padari K; Pooga M; Pedroso de Lima MC; Jurado AS Biochim Biophys Acta; 2012 Mar; 1818(3):877-88. PubMed ID: 22230348 [TBL] [Abstract][Full Text] [Related]
36. Membrane perturbing properties of natural phenolic and resorcinolic lipids. Stasiuk M; Kozubek A FEBS Lett; 2008 Oct; 582(25-26):3607-13. PubMed ID: 18834885 [TBL] [Abstract][Full Text] [Related]
37. Interaction of fullerene nanoparticles with biomembranes: from the partition in lipid membranes to effects on mitochondrial bioenergetics. Santos SM; Dinis AM; Peixoto F; Ferreira L; Jurado AS; Videira RA Toxicol Sci; 2014 Mar; 138(1):117-29. PubMed ID: 24361870 [TBL] [Abstract][Full Text] [Related]
38. A singular state of membrane lipids at cell growth temperatures. Jin AJ; Edidin M; Nossal R; Gershfeld NL Biochemistry; 1999 Oct; 38(40):13275-8. PubMed ID: 10529201 [TBL] [Abstract][Full Text] [Related]
39. Lipid analysis of mitochondrial membranes from the yeast Pichia pastoris. Wriessnegger T; Leitner E; Belegratis MR; Ingolic E; Daum G Biochim Biophys Acta; 2009 Mar; 1791(3):166-72. PubMed ID: 19168151 [TBL] [Abstract][Full Text] [Related]
40. A calorimetric and spectroscopic comparison of the effects of cholesterol and its immediate biosynthetic precursors 7-dehydrocholesterol and desmosterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Benesch MG; Lewis RN; McElhaney RN Chem Phys Lipids; 2015 Oct; 191():123-35. PubMed ID: 26368000 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]