These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 23592024)

  • 1. Scaling advantages and constraints in miniaturized capture assays for single cell protein analysis.
    Salehi-Reyhani A; Sharma S; Burgin E; Barclay M; Cass A; Neil MA; Ces O; Willison KR; Klug DR; Brown A; Novakova M
    Lab Chip; 2013 Jun; 13(11):2066-74. PubMed ID: 23592024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection.
    Salehi-Reyhani A; Kaplinsky J; Burgin E; Novakova M; deMello AJ; Templer RH; Parker P; Neil MA; Ces O; French P; Willison KR; Klug D
    Lab Chip; 2011 Apr; 11(7):1256-61. PubMed ID: 21347466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absolute quantification of protein copy number using a single-molecule-sensitive microarray.
    Burgin E; Salehi-Reyhani A; Barclay M; Brown A; Kaplinsky J; Novakova M; Neil MA; Ces O; Willison KR; Klug DR
    Analyst; 2014 Jul; 139(13):3235-44. PubMed ID: 24676423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyshrink™ based microfluidic chips and protein microarrays.
    Mandon CA; Heyries KA; Blum LJ; Marquette CA
    Biosens Bioelectron; 2010 Dec; 26(4):1218-24. PubMed ID: 20541390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Microfluidic Device for Immunoassay-Based Protein Analysis of Single E. coli Bacteria.
    Stratz S; Dittrich PS
    Methods Mol Biol; 2015; 1346():11-25. PubMed ID: 26542712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated microfluidic bioprocessor for solid phase capture immunoassays.
    Kim J; Jensen EC; Megens M; Boser B; Mathies RA
    Lab Chip; 2011 Sep; 11(18):3106-12. PubMed ID: 21804972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical-free lysis and fractionation of cells by use of surface acoustic waves for sensitive protein assays.
    Salehi-Reyhani A; Gesellchen F; Mampallil D; Wilson R; Reboud J; Ces O; Willison KR; Cooper JM; Klug DR
    Anal Chem; 2015 Feb; 87(4):2161-9. PubMed ID: 25514590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and optimization of high-sensitivity, low-volume microfluidic-based surface immunoassays.
    Zimmermann M; Delamarche E; Wolf M; Hunziker P
    Biomed Microdevices; 2005 Jun; 7(2):99-110. PubMed ID: 15940422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microarray-to-microarray transfer of reagents by snapping of two chips for cross-reactivity-free multiplex immunoassays.
    Li H; Bergeron S; Juncker D
    Anal Chem; 2012 Jun; 84(11):4776-83. PubMed ID: 22536939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microcontact printing with aminosilanes: creating biomolecule micro- and nanoarrays for multiplexed microfluidic bioassays.
    Sathish S; Ricoult SG; Toda-Peters K; Shen AQ
    Analyst; 2017 May; 142(10):1772-1781. PubMed ID: 28430279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabricating protein immunoassay arrays on nitrocellulose using dip-pen lithography techniques.
    Irvine EJ; Hernandez-Santana A; Faulds K; Graham D
    Analyst; 2011 Jul; 136(14):2925-30. PubMed ID: 21647488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extended nanofluidic immunochemical reaction with femtoliter sample volumes.
    Shirai K; Mawatari K; Kitamori T
    Small; 2014 Apr; 10(8):1514-22. PubMed ID: 24339226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunoassay arrays fabricated by dip-pen nanolithography with resonance Raman detection.
    Laing S; Irvine EJ; Hernandez-Santana A; Smith WE; Faulds K; Graham D
    Anal Chem; 2013 Jun; 85(12):5617-21. PubMed ID: 23697378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis of human serum leptin using a nanoarray protein chip based on single-molecule sandwich immunoassay.
    Lee S; Lee S; Ko YH; Jung H; Kim JD; Song JM; Choo J; Eo SK; Kang SH
    Talanta; 2009 Apr; 78(2):608-12. PubMed ID: 19203632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic heavy metal immunoassay based on absorbance measurement.
    Date Y; Terakado S; Sasaki K; Aota A; Matsumoto N; Shiku H; Ino K; Watanabe Y; Matsue T; Ohmura N
    Biosens Bioelectron; 2012 Mar; 33(1):106-12. PubMed ID: 22244671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterning multiplex protein microarrays in a single microfluidic channel.
    Didar TF; Foudeh AM; Tabrizian M
    Anal Chem; 2012 Jan; 84(2):1012-8. PubMed ID: 22124457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-performance UV-curable epoxy resin-based microarray and microfluidic immunoassay devices.
    Yu L; Liu Y; Gan Y; Li CM
    Biosens Bioelectron; 2009 Jun; 24(10):2997-3002. PubMed ID: 19346122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Miniaturization of multiplexed planar recombinant antibody arrays for serum protein profiling.
    Petersson L; Coen M; Amro NA; Truedsson L; Borrebaeck CA; Wingren C
    Bioanalysis; 2014 May; 6(9):1175-85. PubMed ID: 24946919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screen-printed microfluidic device for electrochemical immunoassay.
    Dong H; Li CM; Zhang YF; Cao XD; Gan Y
    Lab Chip; 2007 Dec; 7(12):1752-8. PubMed ID: 18030397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Miniaturized immunoassays: moving beyond the microplate.
    Verch T; Bakhtiar R
    Bioanalysis; 2012 Jan; 4(2):177-88. PubMed ID: 22250800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.