These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 23592049)

  • 101. DNA microarray technology: devices, systems, and applications.
    Heller MJ
    Annu Rev Biomed Eng; 2002; 4():129-53. PubMed ID: 12117754
    [TBL] [Abstract][Full Text] [Related]  

  • 102. DNA Microarray-Based Diagnostics.
    Marzancola MG; Sedighi A; Li PC
    Methods Mol Biol; 2016; 1368():161-78. PubMed ID: 26614075
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Microfludic device for creating ionic strength gradients over DNA microarrays for efficient DNA melting studies and assay development.
    Petersen J; Poulsen L; Birgens H; Dufva M
    PLoS One; 2009; 4(3):e4808. PubMed ID: 19277213
    [TBL] [Abstract][Full Text] [Related]  

  • 104. A High-Resolution Digital DNA Melting Platform for Robust Sequence Profiling and Enhanced Genotype Discrimination.
    Sinha M; Mack H; Coleman TP; Fraley SI
    SLAS Technol; 2018 Dec; 23(6):580-591. PubMed ID: 29652558
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Direct immobilization of biotin on the micro-patterned PEN foil treated by excimer laser.
    Štofik M; Semerádtová A; Malý J; Kolská Z; Neděla O; Wrobel D; Slepička P
    Colloids Surf B Biointerfaces; 2015 Apr; 128():363-369. PubMed ID: 25771440
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Real-time 2D visualization of metabolic activities in zebrafish embryos using a microfluidic technology.
    Zhu F; Baker D; Skommer J; Sewell M; Wlodkowic D
    Cytometry A; 2015 May; 87(5):446-50. PubMed ID: 25808962
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Integrated PCR amplification and detection processes on a Lab-on-Chip platform: a new advanced solution for molecular diagnostics.
    Foglieni B; Brisci A; San Biagio F; Di Pietro P; Petralia S; Conoci S; Ferrari M; Cremonesi L
    Clin Chem Lab Med; 2010 Mar; 48(3):329-36. PubMed ID: 20020819
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Recent advances and future applications of microfluidic live-cell microarrays.
    Rothbauer M; Wartmann D; Charwat V; Ertl P
    Biotechnol Adv; 2015 Nov; 33(6 Pt 1):948-61. PubMed ID: 26133396
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection.
    Huang NT; Zhang HL; Chung MT; Seo JH; Kurabayashi K
    Lab Chip; 2014 Apr; 14(7):1230-45. PubMed ID: 24525555
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Protein-DNA force assay in a microfluidic format.
    Otten M; Wolf P; Gaub HE
    Lab Chip; 2013 Nov; 13(21):4198-204. PubMed ID: 23986395
    [TBL] [Abstract][Full Text] [Related]  

  • 111. A Miniaturized Silicon Lab-on-Chip for Integrated PCR and Hybridization Microarray for High Multiplexing Nucleic Acids Analysis.
    Ventimiglia G; Pesaturo M; Malcolm A; Petralia S
    Biosensors (Basel); 2022 Jul; 12(8):. PubMed ID: 35892460
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Emerging technologies for hybridization based single nucleotide polymorphism detection.
    Knez K; Spasic D; Janssen KP; Lammertyn J
    Analyst; 2014 Jan; 139(2):353-70. PubMed ID: 24298558
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Tunable nanofluidic device for digital nucleic acid analysis.
    Hosseini II; Hamidi SV; Capaldi X; Liu Z; Silva Pessoa MA; Mahshid S; Reisner W
    Nanoscale; 2024 May; 16(19):9583-9592. PubMed ID: 38682564
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Lab-on-a-chip technologies for genodermatoses: Recent progress and future perspectives.
    Hongzhou C; Shuping G; Wenju W; Li L; Lulu W; Linjun D; Jingmin L; Xiaoli R; Li B
    J Dermatol Sci; 2017 Feb; 85(2):71-76. PubMed ID: 27756517
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Single-molecule denaturation mapping of DNA in nanofluidic channels.
    Reisner W; Larsen NB; Silahtaroglu A; Kristensen A; Tommerup N; Tegenfeldt JO; Flyvbjerg H
    Proc Natl Acad Sci U S A; 2010 Jul; 107(30):13294-9. PubMed ID: 20616076
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Paper-based microfluidics with high resolution, cut on a glass fiber membrane for bioassays.
    Fang X; Wei S; Kong J
    Lab Chip; 2014 Mar; 14(5):911-5. PubMed ID: 24401949
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Polymer-monovalent salt-induced DNA compaction studied via single-molecule microfluidic trapping.
    Xu W; Muller SJ
    Lab Chip; 2012 Feb; 12(3):647-51. PubMed ID: 22173785
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Straightforward Micropatterning of Oligonucleotides in Microfluidics by Novel Spin-On ZrO₂ Surfaces.
    Della Giustina G; Zambon A; Lamberti F; Elvassore N; Brusatin G
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13280-8. PubMed ID: 26017394
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Enabling practical surface acoustic wave nebulizer drug delivery via amplitude modulation.
    Rajapaksa A; Qi A; Yeo LY; Coppel R; Friend JR
    Lab Chip; 2014 Jun; 14(11):1858-65. PubMed ID: 24740643
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Two-dimensional salt and temperature DNA denaturation analysis using a magnetoresistive sensor.
    Rizzi G; Dufva M; Hansen MF
    Lab Chip; 2017 Jun; 17(13):2256-2263. PubMed ID: 28593203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.