BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 23592334)

  • 1. Native SILAC: metabolic labeling of proteins in prototroph microorganisms based on lysine synthesis regulation.
    Fröhlich F; Christiano R; Walther TC
    Mol Cell Proteomics; 2013 Jul; 12(7):1995-2005. PubMed ID: 23592334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2nSILAC for Quantitative Proteomics of Prototrophic Baker's Yeast.
    Dannenmaier S; Oeljeklaus S; Warscheid B
    Methods Mol Biol; 2021; 2228():253-270. PubMed ID: 33950496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Technology in Fission Yeast.
    Maček B; Carpy A; Koch A; Bicho CC; Borek WE; Hauf S; Sawin KE
    Cold Spring Harb Protoc; 2017 Jun; 2017(6):pdb.top079814. PubMed ID: 28572211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete Native Stable Isotope Labeling by Amino Acids of Saccharomyces cerevisiae for Global Proteomic Analysis.
    Dannenmaier S; Stiller SB; Morgenstern M; Lübbert P; Oeljeklaus S; Wiedemann N; Warscheid B
    Anal Chem; 2018 Sep; 90(17):10501-10509. PubMed ID: 30102515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction, Growth, and Harvesting of Fission Yeast Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Strains.
    Koch A; Bicho CC; Borek WE; Carpy A; Maček B; Hauf S; Sawin KE
    Cold Spring Harb Protoc; 2017 Jun; 2017(6):pdb.prot091678. PubMed ID: 28572184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method for sporulating budding yeast cells that allows for unbiased identification of kinase substrates using stable isotope labeling by amino acids in cell culture.
    Suhandynata R; Liang J; Albuquerque CP; Zhou H; Hollingsworth NM
    G3 (Bethesda); 2014 Aug; 4(11):2125-35. PubMed ID: 25168012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility of protein turnover studies in prototroph Saccharomyces cerevisiae strains.
    Martin-Perez M; Villén J
    Anal Chem; 2015 Apr; 87(7):4008-14. PubMed ID: 25767917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SILAC-Based Quantitative Phosphoproteomics in Yeast.
    Hernáez ML; Gil C
    Methods Mol Biol; 2023; 2603():103-115. PubMed ID: 36370273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nic1 inactivation enables stable isotope labeling with 13C615N4-arginine in Schizosaccharomyces pombe.
    Carpy A; Patel A; Tay YD; Hagan IM; Macek B
    Mol Cell Proteomics; 2015 Jan; 14(1):243-50. PubMed ID: 25368411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SILAC-Based Proteomic Analysis of Meiosis in the Fission Yeast Schizosaccharomyces pombe.
    Anrather D; Polakova SB; Cipak L; Gregan J
    Methods Mol Biol; 2023; 2603():19-29. PubMed ID: 36370267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative proteomics reveals significant changes in cell shape and an energy shift after IPTG induction via an optimized SILAC approach for Escherichia coli.
    Ping L; Zhang H; Zhai L; Dammer EB; Duong DM; Li N; Yan Z; Wu J; Xu P
    J Proteome Res; 2013 Dec; 12(12):5978-88. PubMed ID: 24224529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A genetic engineering solution to the "arginine conversion problem" in stable isotope labeling by amino acids in cell culture (SILAC).
    Bicho CC; de Lima Alves F; Chen ZA; Rappsilber J; Sawin KE
    Mol Cell Proteomics; 2010 Jul; 9(7):1567-77. PubMed ID: 20460254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap.
    Nagaraj N; Kulak NA; Cox J; Neuhauser N; Mayr K; Hoerning O; Vorm O; Mann M
    Mol Cell Proteomics; 2012 Mar; 11(3):M111.013722. PubMed ID: 22021278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-Based Quantitative Proteomics and Phosphoproteomics in Fission Yeast.
    Carpy A; Koch A; Bicho CC; Borek WE; Hauf S; Sawin KE; Maček B
    Cold Spring Harb Protoc; 2017 Jun; 2017(6):pdb.prot091686. PubMed ID: 28572185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Proteomic Analysis in Candida albicans Using SILAC-Based Mass Spectrometry.
    Kaneva IN; Longworth J; Sudbery PE; Dickman MJ
    Proteomics; 2018 Mar; 18(5-6):e1700278. PubMed ID: 29280593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved SILAC method for double labeling of bacterial proteome.
    Han J; Yi S; Zhao X; Zheng Y; Yang D; Du G; Yang XY; He QY; Sun X
    J Proteomics; 2019 Mar; 194():89-98. PubMed ID: 30553074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic labeling of model organisms using heavy nitrogen (15N).
    Gouw JW; Tops BB; Krijgsveld J
    Methods Mol Biol; 2011; 753():29-42. PubMed ID: 21604113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) for Quantitative Proteomics.
    Hoedt E; Zhang G; Neubert TA
    Adv Exp Med Biol; 2019; 1140():531-539. PubMed ID: 31347069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extending the Range of SLIM-Labeling Applications: From Human Cell Lines in Culture to
    Lignieres L; Sénécaut N; Dang T; Bellutti L; Hamon M; Terrier S; Legros V; Chevreux G; Lelandais G; Mège RM; Dumont J; Camadro JM
    J Proteome Res; 2023 Mar; 22(3):996-1002. PubMed ID: 36748112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative analysis of an orthologous proteomic environment in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe.
    Roguev A; Shevchenko A; Schaft D; Thomas H; Stewart AF; Shevchenko A
    Mol Cell Proteomics; 2004 Feb; 3(2):125-32. PubMed ID: 14617822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.