These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23592401)

  • 1. Eletrochemically actuated stop-go valves for capillary force-operated diagnostic microsystems.
    Washe AP; Lozano P; Bejarano D; Katakis I
    Chemphyschem; 2013 Jul; 14(10):2164-73. PubMed ID: 23592401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An inkjet-printed electrowetting valve for paper-fluidic sensors.
    Koo CK; He F; Nugen SR
    Analyst; 2013 Sep; 138(17):4998-5004. PubMed ID: 23828822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrowetting-based pH- and biomolecule-responsive valves and pH filters.
    Yamaguchi S; Morimoto K; Fukuda J; Suzuki H
    Biosens Bioelectron; 2009 Mar; 24(7):2171-6. PubMed ID: 19118997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UV-nanoimprint lithography as a tool to develop flexible microfluidic devices for electrochemical detection.
    Chen J; Zhou Y; Wang D; He F; Rotello VM; Carter KR; Watkins JJ; Nugen SR
    Lab Chip; 2015 Jul; 15(14):3086-94. PubMed ID: 26095586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanointerstice-driven microflow.
    Chung S; Yun H; Kamm RD
    Small; 2009 Mar; 5(5):609-13. PubMed ID: 19226594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic direct formate fuel cell on paper.
    Copenhaver TS; Purohit KH; Domalaon K; Pham L; Burgess BJ; Manorothkul N; Galvan V; Sotez S; Gomez FA; Haan JL
    Electrophoresis; 2015 Aug; 36(16):1825-9. PubMed ID: 25546700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated microfluidic platform for the electrochemical detection of breast cancer markers in patient serum samples.
    Fragoso A; Latta D; Laboria N; von Germar F; Hansen-Hagge TE; Kemmner W; Gärtner C; Klemm R; Drese KS; O'Sullivan CK
    Lab Chip; 2011 Feb; 11(4):625-31. PubMed ID: 21120243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pencil-drawn paper supported electrodes as simple electrochemical detectors for paper-based fluidic devices.
    Dossi N; Toniolo R; Pizzariello A; Impellizzieri F; Piccin E; Bontempelli G
    Electrophoresis; 2013 Jul; 34(14):2085-91. PubMed ID: 23161669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Detection in Stacked Paper Networks.
    Liu X; Lillehoj PB
    J Lab Autom; 2015 Aug; 20(4):506-10. PubMed ID: 25732354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous flow analytical microsystems based on low-temperature co-fired ceramic technology. Integrated potentiometric detection based on solvent polymeric ion-selective electrodes.
    Ibanez-Garcia N; Mercader MB; Mendes da Rocha Z; Seabra CA; Góngora-Rubio MR; Chamarro JA
    Anal Chem; 2006 May; 78(9):2985-92. PubMed ID: 16642984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low cost microfluidic device based on cotton threads for electroanalytical application.
    Agustini D; Bergamini MF; Marcolino-Junior LH
    Lab Chip; 2016 Jan; 16(2):345-52. PubMed ID: 26659997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns.
    Park SY; Teitell MA; Chiou EP
    Lab Chip; 2010 Jul; 10(13):1655-61. PubMed ID: 20448870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrically-Actuated Valves for Woven Fabric Lateral Flow Devices.
    Narahari T; Dendukuri D; Murthy SK
    Anal Chem; 2017 Apr; 89(8):4671-4679. PubMed ID: 28337914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustofluidics 8: applications of acoustophoresis in continuous flow microsystems.
    Lenshof A; Magnusson C; Laurell T
    Lab Chip; 2012 Apr; 12(7):1210-23. PubMed ID: 22362021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trends in computational simulations of electrochemical processes under hydrodynamic flow in microchannels.
    Santillo MF; Ewing AG; Heien ML
    Anal Bioanal Chem; 2011 Jan; 399(1):183-90. PubMed ID: 20734034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Actuation of elastomeric microvalves in point-of-care settings using handheld, battery-powered instrumentation.
    Addae-Mensah KA; Cheung YK; Fekete V; Rendely MS; Sia SK
    Lab Chip; 2010 Jun; 10(12):1618-22. PubMed ID: 20383403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fuel cell-powered microfluidic platform for lab-on-a-chip applications: Integration into an autonomous amperometric sensing device.
    Esquivel JP; Colomer-Farrarons J; Castellarnau M; Salleras M; del Campo FJ; Samitier J; Miribel-Català P; Sabaté N
    Lab Chip; 2012 Nov; 12(21):4232-5. PubMed ID: 22968667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gravity-induced convective flow in microfluidic systems: electrochemical characterization and application to enzyme-linked immunosorbent assay tests.
    Morier P; Vollet C; Michel PE; Reymond F; Rossier JS
    Electrophoresis; 2004 Nov; 25(21-22):3761-8. PubMed ID: 15565685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An electrochemically driven poly(dimethylsiloxane) microfluidic actuator: oxygen sensing and programmable flows and pH gradients.
    Mitrovski SM; Nuzzo RG
    Lab Chip; 2005 Jun; 5(6):634-45. PubMed ID: 15915256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A disposable electrochemical immunosensor based on carbon screen-printed electrodes for the detection of prostate specific antigen.
    Yan M; Zang D; Ge S; Ge L; Yu J
    Biosens Bioelectron; 2012; 38(1):355-61. PubMed ID: 22770827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.