These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 235925)

  • 1. The non-equivalence of the active sites and the mechanism of a mutationally altered E. coli alkaline phosphatase.
    Chappelet-Tordo D; Lazdunski C; Iwatsubo M; Lazdunski M
    Biochem Biophys Res Commun; 1975 Mar; 63(2):529-34. PubMed ID: 235925
    [No Abstract]   [Full Text] [Related]  

  • 2. Hydrogen-tritium exchange of partially and fully reconstituted zinc and cobalt alkaline phosphatase of Escherichia coli.
    Brown EM; Ulmer DD; Vallee BL
    Biochemistry; 1974 Dec; 13(26):5328-34. PubMed ID: 4611482
    [No Abstract]   [Full Text] [Related]  

  • 3. A mutationally altered alkaline phosphatase from Escherichia coli. I. Formation of an active enzyme in vitro and phenotypic suppression in vivo.
    Halford SE; Lennette DA; Kelley PM; Schlesinger MJ
    J Biol Chem; 1972 Apr; 247(7):2087-94. PubMed ID: 4552687
    [No Abstract]   [Full Text] [Related]  

  • 4. Mutationally altered rate constants in the mechanism of alkaline phosphatase.
    Halford SE; Schlesinger MJ
    Biochem J; 1974 Sep; 141(3):845-52. PubMed ID: 4618778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zinc and magnesium content of alkaline phosphatase from Escherichia coli.
    Bosron WF; Kennedy FS; Vallee BL
    Biochemistry; 1975 May; 14(10):2275-82. PubMed ID: 238559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of a mutationally altered form of the Escherichia coli alkaline phosphatase by zinc.
    Schlesinger MJ
    J Biol Chem; 1966 Jul; 241(13):3181-8. PubMed ID: 5330265
    [No Abstract]   [Full Text] [Related]  

  • 7. A mutationally altered alkaline phosphatase from Escherichia coli. II. Structural and catalytic properties of the activated enzyme.
    Halford SE; Lennette DA; Schlesinger MJ
    J Biol Chem; 1972 Apr; 247(7):2095-101. PubMed ID: 4552688
    [No Abstract]   [Full Text] [Related]  

  • 8. 31P nuclear magnetic resonance study of alkaline phosphatase: the role of inorganic phosphate in limiting the enzyme turnover rate at alkaline pH.
    Hull WE; Halford SE; Gutfreund H; Sykes BD
    Biochemistry; 1976 Apr; 15(7):1547-61. PubMed ID: 4092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Mn2plus-alkaline phosphatase of E. coli.
    Chappelet D; Lazdunski C; Petitclerc C; Lazdunski M
    Biochem Biophys Res Commun; 1970 Jul; 40(1):91-6. PubMed ID: 4318588
    [No Abstract]   [Full Text] [Related]  

  • 10. 35Cl nuclear magnetic resonance study of zinc and phosphate binding of E. coli alkaline phosphatase.
    Norne JE; Csopak H; Lindman B
    Arch Biochem Biophys; 1974 Jun; 162(2):552-9. PubMed ID: 4209891
    [No Abstract]   [Full Text] [Related]  

  • 11. The specific binding of zinc(II) to alkaline phosphatase of Escherichia coli.
    Csopak H
    Eur J Biochem; 1969 Jan; 7(2):186-92. PubMed ID: 4885464
    [No Abstract]   [Full Text] [Related]  

  • 12. Characterization of heterodimeric alkaline phosphatases from Escherichia coli: an investigation of intragenic complementation.
    Hehir MJ; Murphy JE; Kantrowitz ER
    J Mol Biol; 2000 Dec; 304(4):645-56. PubMed ID: 11099386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of hydrolysis of O-phosphorothioates and inorganic thiophosphate by Escherichia coli alkaline phosphatase.
    Chlebowski JF; Coleman JE
    J Biol Chem; 1974 Nov; 249(22):7192-202. PubMed ID: 4612034
    [No Abstract]   [Full Text] [Related]  

  • 14. On the mechanism of the Zn2+ and Co2+-alkaline phosphatase of E. coli. Number of sites and anticooperativity.
    Lazdunski C; Petitclerc C; Chappelet D; Lazdunski M
    Biochem Biophys Res Commun; 1969 Nov; 37(5):744-9. PubMed ID: 4900985
    [No Abstract]   [Full Text] [Related]  

  • 15. Zn2+ and Co2+-alkaline phosphatases of E. coli. A comparative kinetic study.
    Lazdunski C; Lazdunski M
    Eur J Biochem; 1969 Jan; 7(2):294-300. PubMed ID: 4885467
    [No Abstract]   [Full Text] [Related]  

  • 16. Electron paramagnetic resonance studies on the copper(II) substituted alkaline phosphatase from Escherichia coli.
    Csopak H; Falk KE
    Biochim Biophys Acta; 1974 Jul; 359(1):22-32. PubMed ID: 4367983
    [No Abstract]   [Full Text] [Related]  

  • 17. Formation and properties of a tetrameric form of Escherichia coli alkaline phosphatase.
    Reynolds JA; Schlesinger MJ
    Biochemistry; 1969 Nov; 8(11):4278-82. PubMed ID: 4900990
    [No Abstract]   [Full Text] [Related]  

  • 18. 31 P NMR studies on phosphate binding to the Zn 2+ , Co 2+ and Mn 2+ forms of escherichia coli alkaline phosphatase.
    Csopak H; Drakenberg T
    FEBS Lett; 1973 Mar; 30(3):296-300. PubMed ID: 4573438
    [No Abstract]   [Full Text] [Related]  

  • 19. Effect of magnesium on the properties of zinc alkaline phosphatase.
    Bosron WF; Anderson RA; Falk MC; Kennedy FS; Vallee BL
    Biochemistry; 1977 Feb; 16(4):610-4. PubMed ID: 13822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of antibodies to various molecular forms of a mutationally altered Escherichia coli alkaline phosphatase on its activation by zinc.
    Pages JM; Varenne S; Lazdunski C
    Eur J Biochem; 1976 Aug; 67(1):145-53. PubMed ID: 786617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.