These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 23592593)

  • 1. Hydrogen production through aqueous-phase reforming of ethylene glycol in a washcoated microchannel.
    D'Angelo MF; Ordomsky V; Paunovic V; van der Schaaf J; Schouten JC; Nijhuis TA
    ChemSusChem; 2013 Sep; 6(9):1708-16. PubMed ID: 23592593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards stable catalysts for aqueous phase conversion of ethylene glycol for renewable hydrogen.
    Koichumanova K; Vikla AK; de Vlieger DJ; Seshan K; Mojet BL; Lefferts L
    ChemSusChem; 2013 Sep; 6(9):1717-23. PubMed ID: 24023052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water.
    Cortright RD; Davda RR; Dumesic JA
    Nature; 2002 Aug; 418(6901):964-7. PubMed ID: 12198544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the origin of reactivity of steam reforming of ethylene glycol on supported Ni catalysts.
    Li S; Zhang C; Zhang P; Wu G; Ma X; Gong J
    Phys Chem Chem Phys; 2012 Mar; 14(12):4066-9. PubMed ID: 22246195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon-coated ceramic membrane reactor for the production of hydrogen by aqueous-phase reforming of sorbitol.
    Neira D'Angelo MF; Ordomsky V; Schouten JC; van der Schaaf J; Nijhuis TA
    ChemSusChem; 2014 Jul; 7(7):2007-15. PubMed ID: 24989121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aqueous-phase reforming of the low-boiling fraction of rice husk pyrolyzed bio-oil in the presence of platinum catalyst for hydrogen production.
    Pan C; Chen A; Liu Z; Chen P; Lou H; Zheng X
    Bioresour Technol; 2012 Dec; 125():335-9. PubMed ID: 23069602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the Water Phase State on the Thermodynamics of Aqueous-Phase Reforming for Hydrogen Production.
    Ripken RM; Meuldijk J; Gardeniers JGE; Le Gac S
    ChemSusChem; 2017 Dec; 10(24):4909-4913. PubMed ID: 28691770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of Hydrogen Production via Methanol Steam Reforming in Microreactor by Al2O3 Nano-Film Enhanced Catalyst Adhesion.
    Jeong H; Na JG; Jang MS; Ko CH
    J Nanosci Nanotechnol; 2016 May; 16(5):4393-8. PubMed ID: 27483762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogenolysis of ethylene glycol to methanol over modified RANEY® catalysts.
    Wu CT; Qu J; Elliott J; Yu KM; Tsang SC
    Phys Chem Chem Phys; 2013 Jun; 15(23):9043-50. PubMed ID: 23661262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts.
    Wang A; Zhang T
    Acc Chem Res; 2013 Jul; 46(7):1377-86. PubMed ID: 23421609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics study of effects of temperature and concentration on hydrogen-bond abilities of ethylene glycol and glycerol: implications for cryopreservation.
    Weng L; Chen C; Zuo J; Li W
    J Phys Chem A; 2011 May; 115(18):4729-37. PubMed ID: 21500852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dehydration and dehydrogenation of ethylene glycol on rutile TiO2(110).
    Li Z; Kay BD; Dohnálek Z
    Phys Chem Chem Phys; 2013 Aug; 15(29):12180-6. PubMed ID: 23764541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen production from glucose and sorbitol by sorption-enhanced steam reforming: challenges and promises.
    He L; Chen D
    ChemSusChem; 2012 Mar; 5(3):587-95. PubMed ID: 22378630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renewable hydrogen by aqueous-phase reforming of glucose.
    Davda RR; Dumesic JA
    Chem Commun (Camb); 2004 Jan; (1):36-7. PubMed ID: 14737320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen-bond network formation of water molecules and its effects on the glass transitions in the ethylene glycol aqueous solutions: failure of the Gordon-Taylor law in the water-rich range and absence of the T(g) = 115 K rearrangement process in bulk pure water.
    Nagoe A; Oguni M
    J Phys Condens Matter; 2010 Aug; 22(32):325103. PubMed ID: 21386485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrothermal deoxygenation of triglycerides over Pd/C aided by in situ hydrogen production from glycerol reforming.
    Hollak SA; Ariëns MA; de Jong KP; van Es DS
    ChemSusChem; 2014 Apr; 7(4):1057-62. PubMed ID: 24596129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oriented Pt Nanoparticles Supported on Few-Layers Graphene as Highly Active Catalyst for Aqueous-Phase Reforming of Ethylene Glycol.
    Esteve-Adell I; Bakker N; Primo A; Hensen E; García H
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33690-33696. PubMed ID: 27960429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-controlled phase-transfer catalysis for ethylene glycol production from cellulose.
    Tai Z; Zhang J; Wang A; Zheng M; Zhang T
    Chem Commun (Camb); 2012 Jul; 48(56):7052-4. PubMed ID: 22678506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A MEMS methanol reformer heated by decomposition of hydrogen peroxide.
    Kim T; Hwang JS; Kwon S
    Lab Chip; 2007 Jul; 7(7):835-41. PubMed ID: 17594001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.