These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 23592615)

  • 1. Chemical conversion of sugars to lactic acid by alkaline hydrothermal processes.
    Esposito D; Antonietti M
    ChemSusChem; 2013 Jun; 6(6):989-92. PubMed ID: 23592615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water.
    Wang Y; Deng W; Wang B; Zhang Q; Wan X; Tang Z; Wang Y; Zhu C; Cao Z; Wang G; Wan H
    Nat Commun; 2013; 4():2141. PubMed ID: 23846730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification.
    Cara C; Ruiz E; Oliva JM; Sáez F; Castro E
    Bioresour Technol; 2008 Apr; 99(6):1869-76. PubMed ID: 17498947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrothermal conversion of municipal organic waste into resources.
    Goto M; Obuchi R; Hirose T; Sakaki T; Shibata M
    Bioresour Technol; 2004 Jul; 93(3):279-84. PubMed ID: 15062823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic hydrolysis of cellulose dissolved in N-methyl morpholine oxide/water solutions.
    Ramakrishnan S; Collier J; Oyetunji R; Stutts B; Burnett R
    Bioresour Technol; 2010 Jul; 101(13):4965-70. PubMed ID: 19793649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose.
    Yu Q; Zhuang X; Yuan Z; Wang Q; Qi W; Wang W; Zhang Y; Xu J; Xu H
    Bioresour Technol; 2010 Jul; 101(13):4895-9. PubMed ID: 20004094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of lactic acid from paper sludge using acid-tolerant, thermophilic Bacillus coagulan strains.
    Budhavaram NK; Fan Z
    Bioresour Technol; 2009 Dec; 100(23):5966-72. PubMed ID: 19577925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient synthesis of lactic acid from cellulose through the synergistic effect of zinc chloride hydrate and metal salts.
    Tang Z; Liang J; Su J
    Int J Biol Macromol; 2024 Oct; 278(Pt 3):134797. PubMed ID: 39217041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pretreatment of switchgrass for sugar production with the combination of sodium hydroxide and lime.
    Xu J; Cheng JJ
    Bioresour Technol; 2011 Feb; 102(4):3861-8. PubMed ID: 21194931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of lactic acid from glycolaldehyde by alkaline hydrothermal reaction.
    Kishida H; Jin F; Yan X; Moriya T; Enomoto H
    Carbohydr Res; 2006 Nov; 341(15):2619-23. PubMed ID: 16952343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of fructose, glucose, and cellulose to 5-hydroxymethylfurfural by alkaline earth phosphate catalysts in hot compressed water.
    Daorattanachai P; Khemthong P; Viriya-Empikul N; Laosiripojana N; Faungnawakij K
    Carbohydr Res; 2012 Dec; 363():58-61. PubMed ID: 23123573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response surface analysis of the water: feed ratio influences on hydrothermal recovery from biomass.
    Luo G; Cheng X; Shi W; Strong PJ; Wang H; Ni W
    Waste Manag; 2011 Mar; 31(3):438-44. PubMed ID: 21071198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subcritical water as reaction environment: fundamentals of hydrothermal biomass transformation.
    Möller M; Nilges P; Harnisch F; Schröder U
    ChemSusChem; 2011 May; 4(5):566-79. PubMed ID: 21322117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of lactic acid production from cellulose with the addition of Zn/Ni/C under alkaline hydrothermal conditions.
    Zhang S; Jin F; Hu J; Huo Z
    Bioresour Technol; 2011 Jan; 102(2):1998-2003. PubMed ID: 20934324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A sustainable woody biomass biorefinery.
    Liu S; Lu H; Hu R; Shupe A; Lin L; Liang B
    Biotechnol Adv; 2012; 30(4):785-810. PubMed ID: 22306164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation of cellulose and its derived carbohydrates into formic and lactic acids catalyzed by vanadyl cations.
    Tang Z; Deng W; Wang Y; Zhu E; Wan X; Zhang Q; Wang Y
    ChemSusChem; 2014 Jun; 7(6):1557-67. PubMed ID: 24798653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amylolytic bacterial lactic acid fermentation - a review.
    Reddy G; Altaf M; Naveena BJ; Venkateshwar M; Kumar EV
    Biotechnol Adv; 2008; 26(1):22-34. PubMed ID: 17884326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation, characterization and in vitro testing of poly(lactic-co-glycolic) acid/barium titanate nanoparticle composites for enhanced cellular proliferation.
    Ciofani G; Ricotti L; Mattoli V
    Biomed Microdevices; 2011 Apr; 13(2):255-66. PubMed ID: 20981490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen ions in microaqueous phase during lipase catalysed esterification in non-aqueous media.
    Kiran KR; Karanth NG; Divakar S
    Indian J Biochem Biophys; 2002 Apr; 39(2):101-5. PubMed ID: 22896896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excipient hydrolysis and ester formation increase pH in a parenteral solution over aging.
    Hirakura Y; Nakamura M; Wakasawa T; Ban K; Yokota S; Kitamura S
    Int J Pharm; 2006 Nov; 325(1-2):26-38. PubMed ID: 16860951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.