These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23592698)

  • 1. Triggered drug release from superhydrophobic meshes using high-intensity focused ultrasound.
    Yohe ST; Kopechek JA; Porter TM; Colson YL; Grinstaff MW
    Adv Healthc Mater; 2013 Sep; 2(9):1204-8. PubMed ID: 23592698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D superhydrophobic electrospun meshes as reinforcement materials for sustained local drug delivery against colorectal cancer cells.
    Yohe ST; Herrera VL; Colson YL; Grinstaff MW
    J Control Release; 2012 Aug; 162(1):92-101. PubMed ID: 22684120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superhydrophobic materials for tunable drug release: using displacement of air to control delivery rates.
    Yohe ST; Colson YL; Grinstaff MW
    J Am Chem Soc; 2012 Feb; 134(4):2016-9. PubMed ID: 22279966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Layered superhydrophobic meshes for controlled drug release.
    Falde EJ; Freedman JD; Herrera VL; Yohe ST; Colson YL; Grinstaff MW
    J Control Release; 2015 Sep; 214():23-9. PubMed ID: 26160309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HepG2 Cell Resistance against Camptothecin from a Lysosomal Drug Delivery.
    Lee H; Uhm S; Shin JW; Jeon HM; Dongbang S; Jung HS; Na YC; Kang C; Kim JS
    Chem Asian J; 2015 Dec; 10(12):2695-700. PubMed ID: 26373261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionalized hydrophobic poly(glycerol-co-ε-caprolactone) depots for controlled drug release.
    Wolinsky JB; Yohe ST; Colson YL; Grinstaff MW
    Biomacromolecules; 2012 Feb; 13(2):406-11. PubMed ID: 22242897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A small-sized graphene oxide supramolecular assembly for targeted delivery of camptothecin.
    Zhang YM; Cao Y; Yang Y; Chen JT; Liu Y
    Chem Commun (Camb); 2014 Nov; 50(86):13066-9. PubMed ID: 25222700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and in vitro evaluation of an ultrasound-triggered drug delivery system: 10-hydroxycamptothecin loaded PLA microbubbles.
    Hou Z; Li L; Zhan C; Zhu P; Chang D; Jiang Q; Ye S; Yang X; Li Y; Xie L; Zhang Q
    Ultrasonics; 2012 Sep; 52(7):836-41. PubMed ID: 22542992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Irinotecan delivery by microbubble-assisted ultrasound: in vitro validation and a pilot preclinical study.
    Escoffre JM; Novell A; Serrière S; Lecomte T; Bouakaz A
    Mol Pharm; 2013 Jul; 10(7):2667-75. PubMed ID: 23675982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complete regression of xenograft tumors using biodegradable mPEG-PLA-SN38 block copolymer micelles.
    Lu L; Zheng Y; Weng S; Zhu W; Chen J; Zhang X; Lee RJ; Yu B; Jia H; Qin L
    Colloids Surf B Biointerfaces; 2016 Jun; 142():417-423. PubMed ID: 26994941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SN38 polymeric nanoparticles: in vitro cytotoxicity and in vivo antitumor efficacy in xenograft balb/c model with breast cancer versus irinotecan.
    Sepehri N; Rouhani H; Tavassolian F; Montazeri H; Khoshayand MR; Ghahremani MH; Ostad SN; Atyabi F; Dinarvand R
    Int J Pharm; 2014 Aug; 471(1-2):485-97. PubMed ID: 24879937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of oral efficacy of Irinotecan through biodegradable polymeric nanoparticles through in vitro and in vivo investigations.
    Ahmad N; Alam MA; Ahmad R; Umar S; Jalees Ahmad F
    J Microencapsul; 2018 Jun; 35(4):327-343. PubMed ID: 29873288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape design of high drug payload nanoparticles for more effective cancer therapy.
    Li W; Zhang X; Hao X; Jie J; Tian B; Zhang X
    Chem Commun (Camb); 2013 Dec; 49(93):10989-91. PubMed ID: 24136236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of l-Tyrosine-Based Enzyme-Responsive Amphiphilic Poly(ester-urethane) Nanocarriers for Multiple Drug Delivery to Cancer Cells.
    Aluri R; Jayakannan M
    Biomacromolecules; 2017 Jan; 18(1):189-200. PubMed ID: 28064504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecularly precise dendrimer-drug conjugates with tunable drug release for cancer therapy.
    Zhou Z; Ma X; Murphy CJ; Jin E; Sun Q; Shen Y; Van Kirk EA; Murdoch WJ
    Angew Chem Int Ed Engl; 2014 Oct; 53(41):10949-55. PubMed ID: 25155439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prevention of lung cancer recurrence using cisplatin-loaded superhydrophobic nanofiber meshes.
    Kaplan JA; Liu R; Freedman JD; Padera R; Schwartz J; Colson YL; Grinstaff MW
    Biomaterials; 2016 Jan; 76():273-81. PubMed ID: 26547283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ketal containing amphiphilic block copolymer micelles as pH-sensitive drug carriers.
    Lee I; Park M; Kim Y; Hwang O; Khang G; Lee D
    Int J Pharm; 2013 May; 448(1):259-66. PubMed ID: 23524123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel multifunctional poly(amidoamine) dendrimeric delivery system with superior encapsulation capacity for targeted delivery of the chemotherapy drug 10-hydroxycamptothecin.
    Kong X; Yu K; Yu M; Feng Y; Wang J; Li M; Chen Z; He M; Guo R; Tian R; Li Y; Wu W; Hong Z
    Int J Pharm; 2014 Apr; 465(1-2):378-87. PubMed ID: 24530519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PEO-PPO-PEO/Poly(DL-lactide-co-caprolactone) Nanoparticles as Carriers for SN-38: Design, Optimization and Nano-Bio Interface Interactions.
    Koliqi R; Dimchevska S; Geskovski N; Petruševski G; Chacorovska M; Pejova B; Hristov DR; Ugarkovic S; Goracinova K
    Curr Drug Deliv; 2016; 13(3):339-52. PubMed ID: 26728136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of protein corona on the transport of molecules into cells by mesoporous silica nanoparticles.
    Paula AJ; Araujo Júnior RT; Martinez DS; Paredes-Gamero EJ; Nader HB; Durán N; Justo GZ; Alves OL
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8387-93. PubMed ID: 23841723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.