These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 23592780)

  • 41. Efficient identification of photolabelled amino acid residues by combining immunoaffinity purification with MS: revealing the semotiadil-binding site and its relevance to binding sites for myristates in domain III of human serum albumin.
    Kawahara K; Kuniyasu A; Masuda K; Ishiguro M; Nakayama H
    Biochem J; 2002 Apr; 363(Pt 2):223-32. PubMed ID: 11931649
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Glycation of human serum albumin alters its binding efficacy towards the dietary polyphenols: a comparative approach.
    Singha Roy A; Ghosh P; Dasgupta S
    J Biomol Struct Dyn; 2016 Sep; 34(9):1911-8. PubMed ID: 26443197
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular dynamics study of conformational changes in human serum albumin by binding of fatty acids.
    Fujiwara S; Amisaki T
    Proteins; 2006 Aug; 64(3):730-9. PubMed ID: 16783783
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification and relative quantification of specific glycation sites in human serum albumin.
    Frolov A; Hoffmann R
    Anal Bioanal Chem; 2010 Jul; 397(6):2349-56. PubMed ID: 20496030
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural basis of non-steroidal anti-inflammatory drug diclofenac binding to human serum albumin.
    Zhang Y; Lee P; Liang S; Zhou Z; Wu X; Yang F; Liang H
    Chem Biol Drug Des; 2015 Nov; 86(5):1178-84. PubMed ID: 25958880
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nonenzymic glycation of albumin by acyl glucuronides in vitro. Comparison of reactions with reducing sugars.
    Smith PC; Wang C
    Biochem Pharmacol; 1992 Oct; 44(8):1661-8. PubMed ID: 1417987
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of acetoacetate in Amadori product formation of human serum albumin.
    Bohlooli M; Ghaffari-Moghaddam M; Khajeh M; Shahraki-Fallah G; Haghighi-Kekhaiye B; Sheibani N
    J Photochem Photobiol B; 2016 Oct; 163():345-51. PubMed ID: 27614245
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermal glycation of proteins by D-glucose and D-fructose.
    Kańska U; Boratyński J
    Arch Immunol Ther Exp (Warsz); 2002; 50(1):61-6. PubMed ID: 11916310
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Computational investigation of inhibitory mechanism of flavonoids as bovine serum albumin anti-glycation agents.
    Johari A; Moosavi-Movahedi AA; Amanlou M
    Daru; 2014 Dec; 22(1):79. PubMed ID: 25498599
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A theoretical elucidation of glucose interaction with HSA's domains.
    Nasiri R; Bahrami H; Zahedi M; Moosavi-Movahedi AA; Sattarahmady N
    J Biomol Struct Dyn; 2010 Oct; 28(2):211-26. PubMed ID: 20645654
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural basis of the drug-binding specificity of human serum albumin.
    Ghuman J; Zunszain PA; Petitpas I; Bhattacharya AA; Otagiri M; Curry S
    J Mol Biol; 2005 Oct; 353(1):38-52. PubMed ID: 16169013
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fructose-human serum albumin interaction undergoes numerous biophysical and biochemical changes before forming AGEs and aggregates.
    Zaman A; Arif Z; Moinuddin ; Alam K
    Int J Biol Macromol; 2018 Apr; 109():896-906. PubMed ID: 29133088
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Energetic domains and conformational analysis of human serum albumin upon co-incubation with sodium benzoate and glucose.
    Taghavi F; Moosavi-Movahedi AA; Bohlooli M; Habibi-Rezaei M; Hadi Alijanvand H; Amanlou M; Sheibani N; Saboury AA; Ahmad F
    J Biomol Struct Dyn; 2014; 32(3):438-47. PubMed ID: 23581982
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kinetics of fatty acid binding ability of glycated human serum albumin.
    Yamazaki E; Inagaki M; Kurita O; Inoue T
    J Biosci; 2005 Sep; 30(4):475-81. PubMed ID: 16184009
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites.
    Curry S; Mandelkow H; Brick P; Franks N
    Nat Struct Biol; 1998 Sep; 5(9):827-35. PubMed ID: 9731778
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of fructose in glycation and cross-linking of proteins.
    McPherson JD; Shilton BH; Walton DJ
    Biochemistry; 1988 Mar; 27(6):1901-7. PubMed ID: 3132203
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Alginate as an antiglycating agent for human serum albumin.
    Sattarahmady N; Khodagholi F; Moosavi-Movahedi AA; Heli H; Hakimelahi GH
    Int J Biol Macromol; 2007 Jul; 41(2):180-4. PubMed ID: 17350677
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Glycation of albumin: reaction with glucose, fructose, galactose, ribose or glyceraldehyde measured using four methods.
    Syrový I
    J Biochem Biophys Methods; 1994 Mar; 28(2):115-21. PubMed ID: 8040561
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of glycation on the heterogeneity of human serum albumin analysed by reversed-phase high-performance liquid chromatography in a solvent containing formic acid.
    Vidal P; Nielsen E; Welinder BS
    J Chromatogr; 1992 Jan; 573(2):201-6. PubMed ID: 1601952
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Oxidative alterations in the experimental glycation model of diabetes mellitus are due to protein-glucose adduct oxidation. Some fundamental differences in proposed mechanisms of glucose oxidation and oxidant production.
    Hunt JV; Bottoms MA; Mitchinson MJ
    Biochem J; 1993 Apr; 291 ( Pt 2)(Pt 2):529-35. PubMed ID: 8484733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.