These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 2359288)

  • 1. Morphological alterations in tryptic esophagitis: an experimental light microscopic and scanning and transmission electron microscopic study in rabbits.
    Salmo JA; Lehto VP; Myllärniemi HS; Kivilaakso EO
    J Surg Res; 1990 Jul; 49(1):14-7. PubMed ID: 2359288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphology of lysolecithin-induced damage on esophageal mucosa. An experimental light and scanning electron microscopical study.
    Salo JA; Myllärniemi H; Kivilaakso E
    J Surg Res; 1987 Mar; 42(3):290-7. PubMed ID: 3821090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological alterations in experimental esophagitis. Light microscopic and scanning and transmission electron microscopic study.
    Salo JA; Lehto VP; Kivilaakso E
    Dig Dis Sci; 1983 May; 28(5):440-8. PubMed ID: 6404615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkaline esophagitis: a comparison of the ability of components of gastroduodenal contents to injure the rabbit esophagus.
    Lillemoe KD; Johnson LF; Harmon JW
    Gastroenterology; 1983 Sep; 85(3):621-8. PubMed ID: 6307806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of lipase in the pathogenesis of experimental esophagitis in the rabbit.
    Salo JA; Lehto VP; Karonen SL; Kivilaakso E
    Arch Surg; 1987 Oct; 122(10):1160-4. PubMed ID: 3662797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of trypsin and cholate to the pathogenesis of experimental alkaline reflux esophagitis.
    Salo JA; Kivilaakso E
    Scand J Gastroenterol; 1984 Oct; 19(7):875-81. PubMed ID: 6531656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Taurodeoxycholate modulates the effects of pepsin and trypsin in experimental esophagitis.
    Lillemoe KD; Johnson LF; Harmon JW
    Surgery; 1985 Jun; 97(6):662-7. PubMed ID: 3923639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of bile salts and trypsin in the pathogenesis of experimental alkaline esophagitis.
    Salo JA; Kivilaakso E
    Surgery; 1983 Apr; 93(4):525-32. PubMed ID: 6836507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental reflux esophagitis in rats. A scanning electron-microscopic investigation.
    Aharinejad S; Franz P; Fakhari M
    Acta Anat (Basel); 1990; 137(2):180-3. PubMed ID: 2316335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Esophageal dysplasia. Assessment by light microscopy and scanning electron microscopy.
    Goran DA; Shields HM; Bates ML; Zuckerman GR; DeSchryver-Kecskemeti K
    Gastroenterology; 1984 Jan; 86(1):39-50. PubMed ID: 6689673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental esophagitis in a rabbit model. Clinical relevance.
    Johnson LF; Harmon JW
    J Clin Gastroenterol; 1986; 8 Suppl 1():26-44. PubMed ID: 3090135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trypsin activity and bile acid concentrations in the esophagus after distal gastrectomy.
    Kono K; Takahashi A; Sugai H; Iizuka H; Fujii H
    Dig Dis Sci; 2006 Jun; 51(6):1159-64. PubMed ID: 16865586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathophysiology of acute acid injury in rabbit esophageal epithelium.
    Orlando RC; Powell DW; Carney CN
    J Clin Invest; 1981 Jul; 68(1):286-93. PubMed ID: 6788804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Esophagoprotective activity of angiotensin-(1-7) in experimental model of acute reflux esophagitis. Evidence for the role of nitric oxide, sensory nerves, hypoxia-inducible factor-1alpha and proinflammatory cytokines.
    Pawlik MW; Kwiecien S; Pajdo R; Ptak-Belowska A; Brzozowski B; Krzysiek-Maczka G; Strzalka M; Konturek SJ; Brzozowski T
    J Physiol Pharmacol; 2014 Dec; 65(6):809-22. PubMed ID: 25554985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the components of the gastroduodenal contents in experimental acid esophagitis.
    Lillemoe KD; Johnson LF; Harmon JW
    Surgery; 1982 Aug; 92(2):276-84. PubMed ID: 6808683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reflux esophagitis in children: a scanning and transmission electron microscopy study.
    Sbarbati A; Deganello A; Bertini M; Gaburro D; Osculati F
    J Submicrosc Cytol Pathol; 1993 Oct; 25(4):603-11. PubMed ID: 8269407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. H+ back diffusion interferes with intrinsic reactive regulation of esophageal mucosal blood flow.
    Bass BL; Schweitzer EJ; Harmon JW; Kraimer J
    Surgery; 1984 Aug; 96(2):404-13. PubMed ID: 6463868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dilated intercellular spaces: a major morphological feature of esophagitis.
    Ravelli AM; Villanacci V; Ruzzenenti N; Grigolato P; Tobanelli P; Klersy C; Rindi G
    J Pediatr Gastroenterol Nutr; 2006 May; 42(5):510-5. PubMed ID: 16707972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Esophageal epithelial surface in patients with gastroesophageal reflux disease: an electron microscopic study.
    Azumi T; Adachi K; Furuta K; Nakata S; Ohara S; Koshino K; Miki M; Morita T; Tanimura T; Ashizawa N; Kinoshita Y
    World J Gastroenterol; 2008 Oct; 14(37):5712-6. PubMed ID: 18837089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of cimetidine on HCl-taurocholate-induced esophageal mucosal injury.
    Salo JA; Kivilaakso E
    Acta Chir Scand; 1984; 150(8):647-52. PubMed ID: 6532036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.