BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 23592964)

  • 21. A network-based approach to integrate nutrient microenvironment in the prediction of synthetic lethality in cancer metabolism.
    Apaolaza I; San José-Enériz E; Valcarcel LV; Agirre X; Prosper F; Planes FJ
    PLoS Comput Biol; 2022 Mar; 18(3):e1009395. PubMed ID: 35286311
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthetic lethality in large-scale integrated metabolic and regulatory network models of human cells.
    Barrena N; Valcárcel LV; Olaverri-Mendizabal D; Apaolaza I; Planes FJ
    NPJ Syst Biol Appl; 2023 Jul; 9(1):32. PubMed ID: 37454223
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting synthetic lethal interactions in human cancers using graph regularized self-representative matrix factorization.
    Huang J; Wu M; Lu F; Ou-Yang L; Zhu Z
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):657. PubMed ID: 31870274
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SL
    Liu Y; Wu M; Liu C; Li XL; Zheng J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):748-757. PubMed ID: 30969932
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative inference of dynamic regulatory pathways via microarray data.
    Chang WC; Li CW; Chen BS
    BMC Bioinformatics; 2005 Mar; 6():44. PubMed ID: 15748298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human synthetic lethal inference as potential anti-cancer target gene detection.
    Conde-Pueyo N; Munteanu A; Solé RV; Rodríguez-Caso C
    BMC Syst Biol; 2009 Dec; 3():116. PubMed ID: 20015360
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast-SL: an efficient algorithm to identify synthetic lethal sets in metabolic networks.
    Pratapa A; Balachandran S; Raman K
    Bioinformatics; 2015 Oct; 31(20):3299-305. PubMed ID: 26085504
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthetic lethals in HIV: ways to avoid drug resistance : Running title: Preventing HIV resistance.
    Petitjean M; Badel A; Veitia RA; Vanet A
    Biol Direct; 2015 Apr; 10():17. PubMed ID: 25888435
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthetic lethal interaction between oxidative stress response and DNA damage repair in the budding yeast and its application to targeted anticancer therapy.
    Choi JE; Chung WH
    J Microbiol; 2019 Jan; 57(1):9-17. PubMed ID: 30594981
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanistic Computational Models of MicroRNA-Mediated Signaling Networks in Human Diseases.
    Zhao C; Zhang Y; Popel AS
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30669429
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthetic lethality prediction in DNA damage repair, chromatin remodeling and the cell cycle using multi-omics data from cell lines and patients.
    Markowska M; Budzinska MA; Coenen-Stass A; Kang S; Kizling E; Kolmus K; Koras K; Staub E; Szczurek E
    Sci Rep; 2023 Apr; 13(1):7049. PubMed ID: 37120674
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systematic discovery of mutation-specific synthetic lethals by mining pan-cancer human primary tumor data.
    Sinha S; Thomas D; Chan S; Gao Y; Brunen D; Torabi D; Reinisch A; Hernandez D; Chan A; Rankin EB; Bernards R; Majeti R; Dill DL
    Nat Commun; 2017 May; 8():15580. PubMed ID: 28561042
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SL-scan identifies synthetic lethal interactions in cancer using metabolic networks.
    Zangene E; Marashi SA; Montazeri H
    Sci Rep; 2023 Sep; 13(1):15763. PubMed ID: 37737478
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A systematic analysis of the landscape of synthetic lethality-driven precision oncology.
    Schäffer AA; Chung Y; Kammula AV; Ruppin E; Lee JS
    Med; 2024 Jan; 5(1):73-89.e9. PubMed ID: 38218178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting human genetic interactions from cancer genome evolution.
    Lu X; Megchelenbrink W; Notebaart RA; Huynen MA
    PLoS One; 2015; 10(5):e0125795. PubMed ID: 25933428
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identifying collateral and synthetic lethal vulnerabilities within the DNA-damage response.
    Pinoli P; Srihari S; Wong L; Ceri S
    BMC Bioinformatics; 2021 May; 22(1):250. PubMed ID: 33992077
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    Sun N; Petiwala S; Lu C; Hutti JE; Hu M; Hu M; Domanus MH; Mitra D; Addo SN; Miller CP; Chung N
    CRISPR J; 2019 Aug; 2():230-245. PubMed ID: 31436504
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Introduction: Cancer Gene Networks.
    Clarke R
    Methods Mol Biol; 2017; 1513():1-9. PubMed ID: 27807826
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in gene expression variability reveal a stable synthetic lethal interaction network in BRCA2-ovarian cancers.
    Bueno R; Mar JC
    Methods; 2017 Dec; 131():74-82. PubMed ID: 28754563
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Refining regulatory networks through phylogenetic transfer of information.
    Zhang X; Moret BM
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1032-45. PubMed ID: 22547434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.