BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 23592976)

  • 1. Formation of raft-like assemblies within clusters of influenza hemagglutinin observed by MD simulations.
    Parton DL; Tek A; Baaden M; Sansom MS
    PLoS Comput Biol; 2013 Apr; 9(4):e1003034. PubMed ID: 23592976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemagglutinin of influenza virus partitions into the nonraft domain of model membranes.
    Nikolaus J; Scolari S; Bayraktarov E; Jungnick N; Engel S; Pia Plazzo A; Stöckl M; Volkmer R; Veit M; Herrmann A
    Biophys J; 2010 Jul; 99(2):489-98. PubMed ID: 20643067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion.
    Takeda M; Leser GP; Russell CJ; Lamb RA
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):14610-7. PubMed ID: 14561897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function.
    Megha ; London E
    J Biol Chem; 2004 Mar; 279(11):9997-10004. PubMed ID: 14699154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influenza A virus hemagglutinin and neuraminidase mutually accelerate their apical targeting through clustering of lipid rafts.
    Ohkura T; Momose F; Ichikawa R; Takeuchi K; Morikawa Y
    J Virol; 2014 Sep; 88(17):10039-55. PubMed ID: 24965459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of raft molecules in the cell and artificial membranes: approaches by pulse EPR spin labeling and single molecule optical microscopy.
    Subczynski WK; Kusumi A
    Biochim Biophys Acta; 2003 Mar; 1610(2):231-43. PubMed ID: 12648777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes?
    Róg T; Vattulainen I
    Chem Phys Lipids; 2014 Dec; 184():82-104. PubMed ID: 25444976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lateral distribution of the transmembrane domain of influenza virus hemagglutinin revealed by time-resolved fluorescence imaging.
    Scolari S; Engel S; Krebs N; Plazzo AP; De Almeida RF; Prieto M; Veit M; Herrmann A
    J Biol Chem; 2009 Jun; 284(23):15708-16. PubMed ID: 19349276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differently anchored influenza hemagglutinin mutants display distinct interaction dynamics with mutual rafts.
    Shvartsman DE; Kotler M; Tall RD; Roth MG; Henis YI
    J Cell Biol; 2003 Nov; 163(4):879-88. PubMed ID: 14623870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes.
    Sezgin E; Levental I; Grzybek M; Schwarzmann G; Mueller V; Honigmann A; Belov VN; Eggeling C; Coskun U; Simons K; Schwille P
    Biochim Biophys Acta; 2012 Jul; 1818(7):1777-84. PubMed ID: 22450237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of lipid raft partitioning of fluorescently-tagged probes in living cells by Fluorescence Correlation Spectroscopy (FCS).
    Marquer C; Lévêque-Fort S; Potier MC
    J Vis Exp; 2012 Apr; (62):e3513. PubMed ID: 22508446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmembrane helices can induce domain formation in crowded model membranes.
    Domański J; Marrink SJ; Schäfer LV
    Biochim Biophys Acta; 2012 Apr; 1818(4):984-94. PubMed ID: 21884678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes.
    Wiśniewska A; Draus J; Subczynski WK
    Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Order of lipid phases in model and plasma membranes.
    Kaiser HJ; Lingwood D; Levental I; Sampaio JL; Kalvodova L; Rajendran L; Simons K
    Proc Natl Acad Sci U S A; 2009 Sep; 106(39):16645-50. PubMed ID: 19805351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmembrane asymmetry and lateral domains in biological membranes.
    Devaux PF; Morris R
    Traffic; 2004 Apr; 5(4):241-6. PubMed ID: 15030565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of nonequilibrium lipid transport, membrane compartmentalization, and membrane proteins on the lateral organization of the plasma membrane.
    Fan J; Sammalkorpi M; Haataja M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011908. PubMed ID: 20365400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lateral Organization of Influenza Virus Proteins in the Budozone Region of the Plasma Membrane.
    Leser GP; Lamb RA
    J Virol; 2017 May; 91(9):. PubMed ID: 28202765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sterol carrier protein-2 selectively alters lipid composition and cholesterol dynamics of caveolae/lipid raft vs nonraft domains in L-cell fibroblast plasma membranes.
    Atshaves BP; Gallegos AM; McIntosh AL; Kier AB; Schroeder F
    Biochemistry; 2003 Dec; 42(49):14583-98. PubMed ID: 14661971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of the dimerization of transmembrane alpha-helices.
    Psachoulia E; Marshall DP; Sansom MS
    Acc Chem Res; 2010 Mar; 43(3):388-96. PubMed ID: 20017540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Lipid raft and influenza virus--viral glycoproteins on a raft].
    Takeda M
    Uirusu; 2004 Jun; 54(1):9-15. PubMed ID: 15449899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.