These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 23593275)
1. Engineering of acetate recycling and citrate synthase to improve aerobic succinate production in Corynebacterium glutamicum. Zhu N; Xia H; Wang Z; Zhao X; Chen T PLoS One; 2013; 8(4):e60659. PubMed ID: 23593275 [TBL] [Abstract][Full Text] [Related]
2. Aerobic production of succinate from arabinose by metabolically engineered Corynebacterium glutamicum. Chen T; Zhu N; Xia H Bioresour Technol; 2014 Jan; 151():411-4. PubMed ID: 24169202 [TBL] [Abstract][Full Text] [Related]
3. Improved succinate production in Corynebacterium glutamicum by engineering glyoxylate pathway and succinate export system. Zhu N; Xia H; Yang J; Zhao X; Chen T Biotechnol Lett; 2014 Mar; 36(3):553-60. PubMed ID: 24129953 [TBL] [Abstract][Full Text] [Related]
4. Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Litsanov B; Brocker M; Bott M Appl Environ Microbiol; 2012 May; 78(9):3325-37. PubMed ID: 22389371 [TBL] [Abstract][Full Text] [Related]
5. Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum. Litsanov B; Kabus A; Brocker M; Bott M Microb Biotechnol; 2012 Jan; 5(1):116-28. PubMed ID: 22018023 [TBL] [Abstract][Full Text] [Related]
6. Corynebacterium glutamicum CgynfM encodes a dicarboxylate transporter applicable to succinate production. Fukui K; Nanatani K; Nakayama M; Hara Y; Tokura M; Abe K J Biosci Bioeng; 2019 Apr; 127(4):465-471. PubMed ID: 30392965 [TBL] [Abstract][Full Text] [Related]
7. Redirecting carbon flux through pgi-deficient and heterologous transhydrogenase toward efficient succinate production in Corynebacterium glutamicum. Wang C; Zhou Z; Cai H; Chen Z; Xu H J Ind Microbiol Biotechnol; 2017 Jul; 44(7):1115-1126. PubMed ID: 28303352 [TBL] [Abstract][Full Text] [Related]
8. Glycerol as a substrate for aerobic succinate production in minimal medium with Corynebacterium glutamicum. Litsanov B; Brocker M; Bott M Microb Biotechnol; 2013 Mar; 6(2):189-95. PubMed ID: 22513227 [TBL] [Abstract][Full Text] [Related]
9. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli. Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031 [TBL] [Abstract][Full Text] [Related]
10. Engineering of Corynebacterium glutamicum for growth and succinate production from levoglucosan, a pyrolytic sugar substrate. Kim EM; Um Y; Bott M; Woo HM FEMS Microbiol Lett; 2015 Oct; 362(19):. PubMed ID: 26363018 [TBL] [Abstract][Full Text] [Related]
11. Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. Inui M; Kawaguchi H; Murakami S; Vertès AA; Yukawa H J Mol Microbiol Biotechnol; 2004; 8(4):243-54. PubMed ID: 16179801 [TBL] [Abstract][Full Text] [Related]
12. Effects of eliminating pyruvate node pathways and of coexpression of heterogeneous carboxylation enzymes on succinate production by Enterobacter aerogenes. Tajima Y; Yamamoto Y; Fukui K; Nishio Y; Hashiguchi K; Usuda Y; Sode K Appl Environ Microbiol; 2015 Feb; 81(3):929-37. PubMed ID: 25416770 [TBL] [Abstract][Full Text] [Related]
13. Succinate production from CO₂-grown microalgal biomass as carbon source using engineered Corynebacterium glutamicum through consolidated bioprocessing. Lee J; Sim SJ; Bott M; Um Y; Oh MK; Woo HM Sci Rep; 2014 Jul; 4():5819. PubMed ID: 25056811 [TBL] [Abstract][Full Text] [Related]
14. Production of Succinate from Acetate by Metabolically Engineered Escherichia coli. Li Y; Huang B; Wu H; Li Z; Ye Q; Zhang YP ACS Synth Biol; 2016 Nov; 5(11):1299-1307. PubMed ID: 27088218 [TBL] [Abstract][Full Text] [Related]
15. [Effect of overexpressing isocitrate lyase on succinate production in ldh(-1) Corynebacterium glutamicum]. Yang C; Hao N; Yan M; Gao L; Xu L Sheng Wu Gong Cheng Xue Bao; 2013 Nov; 29(11):1696-700. PubMed ID: 24701837 [TBL] [Abstract][Full Text] [Related]
16. Pyruvate kinase deletion as an effective phenotype to enhance lysine production in Corynebacterium glutamicum ATCC13032: Redirecting the carbon flow to a precursor metabolite. Yanase M; Aikoh T; Sawada K; Ogura K; Hagiwara T; Imai K; Wada M; Yokota A J Biosci Bioeng; 2016 Aug; 122(2):160-7. PubMed ID: 26983943 [TBL] [Abstract][Full Text] [Related]
17. Engineering Corynebacterium glutamicum for the production of pyruvate. Wieschalka S; Blombach B; Eikmanns BJ Appl Microbiol Biotechnol; 2012 Apr; 94(2):449-59. PubMed ID: 22228312 [TBL] [Abstract][Full Text] [Related]
19. Engineering Corynebacterium glutamicum for efficient production of succinic acid from corn stover pretreated by concentrated-alkali under steam-assistant conditions. Li K; Li C; Zhao XQ; Liu CG; Bai FW Bioresour Technol; 2023 Jun; 378():128991. PubMed ID: 37003455 [TBL] [Abstract][Full Text] [Related]
20. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Okino S; Noburyu R; Suda M; Jojima T; Inui M; Yukawa H Appl Microbiol Biotechnol; 2008 Dec; 81(3):459-64. PubMed ID: 18777022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]