These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 23594072)
1. Glutathione-responsive biodegradable poly(urea-urethane)s containing L-cystine-based chain extender. Wang J; Zheng Z; Chen L; Tu X; Wang X J Biomater Sci Polym Ed; 2013; 24(7):831-48. PubMed ID: 23594072 [TBL] [Abstract][Full Text] [Related]
2. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization. Li Z; Yang X; Wu L; Chen Z; Lin Y; Xu K; Chen GQ J Biomater Sci Polym Ed; 2009; 20(9):1179-202. PubMed ID: 19520007 [TBL] [Abstract][Full Text] [Related]
3. Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation. Tatai L; Moore TG; Adhikari R; Malherbe F; Jayasekara R; Griffiths I; Gunatillake PA Biomaterials; 2007 Dec; 28(36):5407-17. PubMed ID: 17915310 [TBL] [Abstract][Full Text] [Related]
4. The in vitro hydrolysis of poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol). Loh XJ; Tan KK; Li X; Li J Biomaterials; 2006 Mar; 27(9):1841-50. PubMed ID: 16305807 [TBL] [Abstract][Full Text] [Related]
5. Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(epsilon-caprolactone)-poly(ethylene oxide) diols and various chain extenders. Gorna K; Gogolewski S J Biomed Mater Res; 2002 Jun; 60(4):592-606. PubMed ID: 11948518 [TBL] [Abstract][Full Text] [Related]
6. Poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol) as candidate biomaterials: characterization and mechanical property study. Li X; Loh XJ; Wang K; He C; Li J Biomacromolecules; 2005; 6(5):2740-7. PubMed ID: 16153114 [TBL] [Abstract][Full Text] [Related]
7. Trypsin-inspired poly(urethane-urea)s based on poly-lysine oligomer segment. Gu Z; Wang F; Lu H; Wang X; Zheng Z J Biomater Sci Polym Ed; 2015; 26(5):311-21. PubMed ID: 25584962 [TBL] [Abstract][Full Text] [Related]
8. Biodegradable radiopaque iodinated poly(ester urethane)s containing poly(ε-caprolactone) blocks: synthesis, characterization, and biocompatibility. Sang L; Wei Z; Liu K; Wang X; Song K; Wang H; Qi M J Biomed Mater Res A; 2014 Apr; 102(4):1121-30. PubMed ID: 23640806 [TBL] [Abstract][Full Text] [Related]
9. Synthesis, characterizations, and biocompatibility of block poly(ester-urethane)s based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) and poly(ε-caprolactone). Qiu H; Li D; Chen X; Fan K; Ou W; Chen KC; Xu K J Biomed Mater Res A; 2013 Jan; 101(1):75-86. PubMed ID: 22826204 [TBL] [Abstract][Full Text] [Related]
10. Electrospun biodegradable calcium containing poly(ester-urethane)urea: synthesis, fabrication, in vitro degradation, and biocompatibility evaluation. Nair PA; Ramesh P J Biomed Mater Res A; 2013 Jul; 101(7):1876-87. PubMed ID: 23712992 [TBL] [Abstract][Full Text] [Related]
11. Synthesis, characterizations and biocompatibility of alternating block polyurethanes based on P3/4HB and PPG-PEG-PPG. Li G; Li P; Qiu H; Li D; Su M; Xu K J Biomed Mater Res A; 2011 Jul; 98(1):88-99. PubMed ID: 21538829 [TBL] [Abstract][Full Text] [Related]
12. Biodegradable hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol), poly(ethylene glycol), and polycaprolactone as in situ thermogels. Li Z; Zhang Z; Liu KL; Ni X; Li J Biomacromolecules; 2012 Dec; 13(12):3977-89. PubMed ID: 23167676 [TBL] [Abstract][Full Text] [Related]
13. On imparting radiopacity to a poly(urethane urea). James NR; Jayakrishnan A Biomaterials; 2007 Jul; 28(21):3182-7. PubMed ID: 17445880 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of a novel biomedical poly(ester urethane) based on aliphatic uniform-size diisocyanate and the blood compatibility of PEG-grafted surfaces. Liu X; Xia Y; Liu L; Zhang D; Hou Z J Biomater Appl; 2018 May; 32(10):1329-1342. PubMed ID: 29547018 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of OH-group-containing, biodegradable polyurethane and protein fixation on its surface. Yang L; Wei J; Yan L; Huang Y; Jing X Biomacromolecules; 2011 Jun; 12(6):2032-8. PubMed ID: 21488702 [TBL] [Abstract][Full Text] [Related]
16. Synthesis, degradation, and cytotoxicity of multiblock poly(epsilon-caprolactone urethane)s containing gemini quaternary ammonium cationic groups. Ding M; Li J; Fu X; Zhou J; Tan H; Gu Q; Fu Q Biomacromolecules; 2009 Oct; 10(10):2857-65. PubMed ID: 19817491 [TBL] [Abstract][Full Text] [Related]
17. Effect of the hard segment chemistry and structure on the thermal and mechanical properties of novel biomedical segmented poly(esterurethanes). Caracciolo PC; Buffa F; Abraham GA J Mater Sci Mater Med; 2009 Jan; 20(1):145-55. PubMed ID: 18704646 [TBL] [Abstract][Full Text] [Related]
18. The degradation and biocompatibility of pH-sensitive biodegradable polyurethanes for intracellular multifunctional antitumor drug delivery. Zhou L; Liang D; He X; Li J; Tan H; Li J; Fu Q; Gu Q Biomaterials; 2012 Mar; 33(9):2734-45. PubMed ID: 22236829 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and properties of biodegradable poly(ester-urethane)s based on poly(ε-caprolactone) and aliphatic diurethane diisocyanate for long-term implant application: effect of uniform-size hard segment content. Zhang L; Zhang C; Zhang W; Zhang H; Hou Z J Biomater Sci Polym Ed; 2019 Sep; 30(13):1212-1226. PubMed ID: 31140366 [TBL] [Abstract][Full Text] [Related]
20. Enzyme-biomaterial interactions: effect of biosystems on degradation of polyurethanes. Santerre JP; Labow RS; Adams GA J Biomed Mater Res; 1993 Jan; 27(1):97-109. PubMed ID: 8421004 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]