These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 23594310)

  • 21. Thermal Signatures of Plasmonic Fano Interferences: Toward the Achievement of Nanolocalized Temperature Manipulation.
    Baldwin CL; Bigelow NW; Masiello DJ
    J Phys Chem Lett; 2014 Apr; 5(8):1347-54. PubMed ID: 26269978
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiple Fano resonances in single-layer nonconcentric core-shell nanostructures.
    Zhang J; Zayats A
    Opt Express; 2013 Apr; 21(7):8426-36. PubMed ID: 23571932
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fano Interference in the Optical Absorption of an Individual Gold-Silver Nanodimer.
    Lombardi A; Grzelczak MP; Pertreux E; Crut A; Maioli P; Pastoriza-Santos I; Liz-Marzán LM; Vallée F; Del Fatti N
    Nano Lett; 2016 Oct; 16(10):6311-6316. PubMed ID: 27648834
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fano-like resonance in symmetry-broken gold nanotube dimer.
    Wu D; Jiang S; Cheng Y; Liu X
    Opt Express; 2012 Nov; 20(24):26559-67. PubMed ID: 23187511
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deterministic phase engineering for optical Fano resonances with arbitrary lineshape and frequencies.
    Lin J; Huang L; Yu Y; He S; Cao L
    Opt Express; 2015 Jul; 23(15):19154-65. PubMed ID: 26367578
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Near field excited state imaging via stimulated electron energy gain spectroscopy of localized surface plasmon resonances in plasmonic nanorod antennas.
    Collette R; Garfinkel DA; Hu Z; Masiello DJ; Rack PD
    Sci Rep; 2020 Jul; 10(1):12537. PubMed ID: 32719406
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The nonlinear Fano effect.
    Kroner M; Govorov AO; Remi S; Biedermann B; Seidl S; Badolato A; Petroff PM; Zhang W; Barbour R; Gerardot BD; Warburton RJ; Karrai K
    Nature; 2008 Jan; 451(7176):311-4. PubMed ID: 18202652
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmonic resonances in self-assembled reduced symmetry gold nanorod structures.
    Biswas S; Duan J; Nepal D; Pachter R; Vaia R
    Nano Lett; 2013 May; 13(5):2220-5. PubMed ID: 23607657
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Imaging Plasmon Hybridization of Fano Resonances via Hot-Electron-Mediated Absorption Mapping.
    Simoncelli S; Li Y; Cortés E; Maier SA
    Nano Lett; 2018 Jun; 18(6):3400-3406. PubMed ID: 29715431
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of plasmon resonance in metal/dielectric nanocavities for high-efficiency photocatalytic device.
    Rajput NS; Shao-Horn Y; Li XH; Kim SG; Jouiad M
    Phys Chem Chem Phys; 2017 Jul; 19(26):16989-16999. PubMed ID: 28597895
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Symmetry-breaking induced magnetic Fano resonances in densely packed arrays of symmetric nanotrimers.
    Wang N; Zeisberger M; Huebner U; Giannini V; Schmidt MA
    Sci Rep; 2019 Feb; 9(1):2873. PubMed ID: 30814665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiple Fano resonances in monolayer hexagonal non-close-packed metallic shells.
    Chen J; Shen Q; Chen Z; Wang Q; Tang C; Wang Z
    J Chem Phys; 2012 Jun; 136(21):214703. PubMed ID: 22697562
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correlative electron energy loss spectroscopy and cathodoluminescence spectroscopy on three-dimensional plasmonic split ring resonators.
    Bicket IC; Bellido EP; Meuret S; Polman A; Botton GA
    Microscopy (Oxf); 2018 Mar; 67(suppl_1):i40-i51. PubMed ID: 29584929
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Topological effects in anisotropy-induced nano-fano resonance of a cylinder.
    Gao D; Gao L; Novitsky A; Chen H; Luk'yanchuk B
    Opt Lett; 2015 Sep; 40(17):4162-5. PubMed ID: 26368737
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale.
    Colliex C; Kociak M; Stéphan O
    Ultramicroscopy; 2016 Mar; 162():A1-A24. PubMed ID: 26778606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface-Enhanced Molecular Electron Energy Loss Spectroscopy.
    Konečná A; Neuman T; Aizpurua J; Hillenbrand R
    ACS Nano; 2018 May; 12(5):4775-4786. PubMed ID: 29641179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of asymmetric morphology on coupling surface plasmon modes and generalized plasmon ruler.
    Zhang KJ; Da B; Ding ZJ
    Ultramicroscopy; 2018 Feb; 185():55-64. PubMed ID: 29182920
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spontaneous and stimulated electron-photon interactions in nanoscale plasmonic near fields.
    Liebtrau M; Sivis M; Feist A; Lourenço-Martins H; Pazos-Pérez N; Alvarez-Puebla RA; de Abajo FJG; Polman A; Ropers C
    Light Sci Appl; 2021 Apr; 10(1):82. PubMed ID: 33859160
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fano resonances in low-energy electron transmission through crystalline films.
    Wolf GV; Chuburin YP
    J Phys Condens Matter; 2009 May; 21(18):185007. PubMed ID: 21825453
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inelastic Scattering of Electron Beams by Nonreciprocal Nanotructures.
    Yu R; Konečná A; de Abajo FJG
    Phys Rev Lett; 2021 Oct; 127(15):157404. PubMed ID: 34678034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.