These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
451 related articles for article (PubMed ID: 23594359)
1. Synemin is expressed in reactive astrocytes and Rosenthal fibers in Alexander disease. Pekny T; Faiz M; Wilhelmsson U; Curtis MA; Matej R; Skalli O; Pekny M APMIS; 2014 Jan; 122(1):76-80. PubMed ID: 23594359 [TBL] [Abstract][Full Text] [Related]
2. The origin of Rosenthal fibers and their contributions to astrocyte pathology in Alexander disease. Sosunov AA; McKhann GM; Goldman JE Acta Neuropathol Commun; 2017 Mar; 5(1):27. PubMed ID: 28359321 [TBL] [Abstract][Full Text] [Related]
3. Plectin regulates the organization of glial fibrillary acidic protein in Alexander disease. Tian R; Gregor M; Wiche G; Goldman JE Am J Pathol; 2006 Mar; 168(3):888-97. PubMed ID: 16507904 [TBL] [Abstract][Full Text] [Related]
4. Clinical aspects and pathology of Alexander disease, and morphological and functional alteration of astrocytes induced by GFAP mutation. Yoshida T; Nakagawa M Neuropathology; 2012 Aug; 32(4):440-6. PubMed ID: 22118268 [TBL] [Abstract][Full Text] [Related]
5. The Alexander disease-causing glial fibrillary acidic protein mutant, R416W, accumulates into Rosenthal fibers by a pathway that involves filament aggregation and the association of alpha B-crystallin and HSP27. Der Perng M; Su M; Wen SF; Li R; Gibbon T; Prescott AR; Brenner M; Quinlan RA Am J Hum Genet; 2006 Aug; 79(2):197-213. PubMed ID: 16826512 [TBL] [Abstract][Full Text] [Related]
6. Alexander disease-associated glial fibrillary acidic protein mutations in mice induce Rosenthal fiber formation and a white matter stress response. Hagemann TL; Connor JX; Messing A J Neurosci; 2006 Oct; 26(43):11162-73. PubMed ID: 17065456 [TBL] [Abstract][Full Text] [Related]
7. Metabolic Enzyme Alterations and Astrocyte Dysfunction in a Murine Model of Alexander Disease With Severe Reactive Gliosis. Heaven MR; Herren AW; Flint DL; Pacheco NL; Li J; Tang A; Khan F; Goldman JE; Phinney BS; Olsen ML Mol Cell Proteomics; 2022 Jan; 21(1):100180. PubMed ID: 34808356 [TBL] [Abstract][Full Text] [Related]
8. Murine model of Alexander disease: analysis of GFAP aggregate formation and its pathological significance. Tanaka KF; Takebayashi H; Yamazaki Y; Ono K; Naruse M; Iwasato T; Itohara S; Kato H; Ikenaka K Glia; 2007 Apr; 55(6):617-31. PubMed ID: 17299771 [TBL] [Abstract][Full Text] [Related]
9. Synemin is expressed in reactive astrocytes in neurotrauma and interacts differentially with vimentin and GFAP intermediate filament networks. Jing R; Wilhelmsson U; Goodwill W; Li L; Pan Y; Pekny M; Skalli O J Cell Sci; 2007 Apr; 120(Pt 7):1267-77. PubMed ID: 17356066 [TBL] [Abstract][Full Text] [Related]
10. Glial fibrillary acidic protein is pathologically modified in Alexander disease. Lin NH; Jian WS; Snider N; Perng MD J Biol Chem; 2024 Jul; 300(7):107402. PubMed ID: 38782207 [TBL] [Abstract][Full Text] [Related]
11. Suppression of GFAP toxicity by alphaB-crystallin in mouse models of Alexander disease. Hagemann TL; Boelens WC; Wawrousek EF; Messing A Hum Mol Genet; 2009 Apr; 18(7):1190-9. PubMed ID: 19129171 [TBL] [Abstract][Full Text] [Related]
12. GFAP and its role in Alexander disease. Quinlan RA; Brenner M; Goldman JE; Messing A Exp Cell Res; 2007 Jun; 313(10):2077-87. PubMed ID: 17498694 [TBL] [Abstract][Full Text] [Related]
14. Elevated GFAP isoform expression promotes protein aggregation and compromises astrocyte function. Lin NH; Yang AW; Chang CH; Perng MD FASEB J; 2021 May; 35(5):e21614. PubMed ID: 33908669 [TBL] [Abstract][Full Text] [Related]
15. Aberrant astrocyte Ca Saito K; Shigetomi E; Yasuda R; Sato R; Nakano M; Tashiro K; Tanaka KF; Ikenaka K; Mikoshiba K; Mizuta I; Yoshida T; Nakagawa M; Mizuno T; Koizumi S Glia; 2018 May; 66(5):1053-1067. PubMed ID: 29383757 [TBL] [Abstract][Full Text] [Related]
16. Site-specific phosphorylation and caspase cleavage of GFAP are new markers of Alexander disease severity. Battaglia RA; Beltran AS; Delic S; Dumitru R; Robinson JA; Kabiraj P; Herring LE; Madden VJ; Ravinder N; Willems E; Newman RA; Quinlan RA; Goldman JE; Perng MD; Inagaki M; Snider NT Elife; 2019 Nov; 8():. PubMed ID: 31682229 [TBL] [Abstract][Full Text] [Related]
17. Gene expression analysis in mice with elevated glial fibrillary acidic protein and Rosenthal fibers reveals a stress response followed by glial activation and neuronal dysfunction. Hagemann TL; Gaeta SA; Smith MA; Johnson DA; Johnson JA; Messing A Hum Mol Genet; 2005 Aug; 14(16):2443-58. PubMed ID: 16014634 [TBL] [Abstract][Full Text] [Related]
18. STAT3 Drives GFAP Accumulation and Astrocyte Pathology in a Mouse Model of Alexander Disease. Hagemann TL; Coyne S; Levin A; Wang L; Feany MB; Messing A Cells; 2023 Mar; 12(7):. PubMed ID: 37048051 [TBL] [Abstract][Full Text] [Related]
19. Novel deletion mutation in GFAP gene in an infantile form of Alexander disease. Murakami N; Tsuchiya T; Kanazawa N; Tsujino S; Nagai T Pediatr Neurol; 2008 Jan; 38(1):50-2. PubMed ID: 18054694 [TBL] [Abstract][Full Text] [Related]
20. Aggregation-prone GFAP mutation in Alexander disease validated using a zebrafish model. Lee SH; Nam TS; Kim KH; Kim JH; Yoon W; Heo SH; Kim MJ; Shin BA; Perng MD; Choy HE; Jo J; Kim MK; Choi SY BMC Neurol; 2017 Sep; 17(1):175. PubMed ID: 28882119 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]