BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 23595021)

  • 1. Evolutionary dynamics of retrotransposons assessed by high-throughput sequencing in wild relatives of wheat.
    Senerchia N; Wicker T; Felber F; Parisod C
    Genome Biol Evol; 2013; 5(5):1010-20. PubMed ID: 23595021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contrasting evolutionary trajectories of multiple retrotransposons following independent allopolyploidy in wild wheats.
    Senerchia N; Felber F; Parisod C
    New Phytol; 2014 May; 202(3):975-985. PubMed ID: 24548250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary dynamics of retrotransposons following autopolyploidy in the Buckler Mustard species complex.
    Bardil A; Tayalé A; Parisod C
    Plant J; 2015 May; 82(4):621-31. PubMed ID: 25823965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TEnest: automated chronological annotation and visualization of nested plant transposable elements.
    Kronmiller BA; Wise RP
    Plant Physiol; 2008 Jan; 146(1):45-59. PubMed ID: 18032588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements.
    Staton SE; Bakken BH; Blackman BK; Chapman MA; Kane NC; Tang S; Ungerer MC; Knapp SJ; Rieseberg LH; Burke JM
    Plant J; 2012 Oct; 72(1):142-53. PubMed ID: 22691070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses.
    Santos FC; Guyot R; do Valle CB; Chiari L; Techio VH; Heslop-Harrison P; Vanzela AL
    Chromosome Res; 2015 Sep; 23(3):571-82. PubMed ID: 26386563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of transposable elements on genome structure and evolution in bread wheat.
    Wicker T; Gundlach H; Spannagl M; Uauy C; Borrill P; Ramírez-González RH; De Oliveira R; ; Mayer KFX; Paux E; Choulet F
    Genome Biol; 2018 Aug; 19(1):103. PubMed ID: 30115100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long Terminal Repeat Retrotransposon Content in Eight Diploid Sunflower Species Inferred from Next-Generation Sequence Data.
    Tetreault HM; Ungerer MC
    G3 (Bethesda); 2016 Aug; 6(8):2299-308. PubMed ID: 27233667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential introgression and reorganization of retrotransposons in hybrid zones between wild wheats.
    Senerchia N; Felber F; North B; Sarr A; Guadagnuolo R; Parisod C
    Mol Ecol; 2016 Jun; 25(11):2518-28. PubMed ID: 26678573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolving fine-grained dynamics of retrotransposons: comparative analysis of inferential methods and genomic resources.
    Choudhury RR; Neuhaus JM; Parisod C
    Plant J; 2017 Jun; 90(5):979-993. PubMed ID: 28244250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of Ty3-gypsy group LTR retrotransposons Fatima on B-genome specificity of polyploid wheats.
    Salina EA; Sergeeva EM; Adonina IG; Shcherban AB; Belcram H; Huneau C; Chalhoub B
    BMC Plant Biol; 2011 Jun; 11():99. PubMed ID: 21635794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic abundance and transcriptional activity of diverse gypsy and copia long terminal repeat retrotransposons in three wild sunflower species.
    Qiu F; Ungerer MC
    BMC Plant Biol; 2018 Jan; 18(1):6. PubMed ID: 29304730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular characterization of the Sasanda LTR copia retrotransposon family uncovers their recent amplification in Triticum aestivum (L.) genome.
    Ragupathy R; Banks T; Cloutier S
    Mol Genet Genomics; 2010 Mar; 283(3):255-71. PubMed ID: 20127492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics and differential proliferation of transposable elements during the evolution of the B and A genomes of wheat.
    Charles M; Belcram H; Just J; Huneau C; Viollet A; Couloux A; Segurens B; Carter M; Huteau V; Coriton O; Appels R; Samain S; Chalhoub B
    Genetics; 2008 Oct; 180(2):1071-86. PubMed ID: 18780739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome.
    Baucom RS; Estill JC; Chaparro C; Upshaw N; Jogi A; Deragon JM; Westerman RP; Sanmiguel PJ; Bennetzen JL
    PLoS Genet; 2009 Nov; 5(11):e1000732. PubMed ID: 19936065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis.
    Zedek F; Smerda J; Smarda P; Bureš P
    BMC Plant Biol; 2010 Nov; 10():265. PubMed ID: 21118487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide analyses of miniature inverted-repeat transposable elements reveals new insights into the evolution of the Triticum-Aegilops group.
    Keidar-Friedman D; Bariah I; Kashkush K
    PLoS One; 2018; 13(10):e0204972. PubMed ID: 30356268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The population genetic structure approach adds new insights into the evolution of plant LTR retrotransposon lineages.
    Suguiyama VF; Vasconcelos LAB; Rossi MM; Biondo C; de Setta N
    PLoS One; 2019; 14(5):e0214542. PubMed ID: 31107873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity, dynamics and effects of long terminal repeat retrotransposons in the model grass Brachypodium distachyon.
    Stritt C; Wyler M; Gimmi EL; Pippel M; Roulin AC
    New Phytol; 2020 Sep; 227(6):1736-1748. PubMed ID: 31677277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dynamics of LTR retrotransposon accumulation across 25 million years of panicoid grass evolution.
    Estep MC; DeBarry JD; Bennetzen JL
    Heredity (Edinb); 2013 Feb; 110(2):194-204. PubMed ID: 23321774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.