These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 23595031)

  • 1. A polymeric waveguide resonant mirror (RM) device for detection in microfluidic flow cells.
    Gupta R; Goddard NJ
    Analyst; 2013 Jun; 138(11):3209-15. PubMed ID: 23595031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel leaky waveguide grating (LWG) device for evanescent wave broadband absorption spectroscopy in microfluidic flow cells.
    Gupta R; Goddard NJ
    Analyst; 2013 Mar; 138(6):1803-11. PubMed ID: 23370342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absorption spectroscopy in microfluidic flow cells using a metal clad leaky waveguide device with a porous gel waveguide layer.
    Gupta R; Bastani B; Goddard NJ; Grieve B
    Analyst; 2013 Jan; 138(1):307-14. PubMed ID: 23152951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A one-step protocol for the chemical derivatisation of glass microfluidic devices.
    Wootton RC; deMello AJ
    Lab Chip; 2006 Apr; 6(4):471-3. PubMed ID: 16572208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices.
    Nock V; Blaikie RJ; David T
    Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of microfluidic devices containing patterned microwell arrays.
    Henley WH; Dennis PJ; Ramsey JM
    Anal Chem; 2012 Feb; 84(3):1776-80. PubMed ID: 22242542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of biofunctionalized microfluidic structures by low-temperature wax bonding.
    Díaz-González M; Baldi A
    Anal Chem; 2012 Sep; 84(18):7838-44. PubMed ID: 22905798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Full-field photonic biosensors based on tunable bio-doped sol-gel glasses.
    Llobera A; Cadarso VJ; Darder M; Domínguez C; Fernández-Sánchez C
    Lab Chip; 2008 Jul; 8(7):1185-90. PubMed ID: 18584096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses.
    Kim M; Hwang DJ; Jeon H; Hiromatsu K; Grigoropoulos CP
    Lab Chip; 2009 Jan; 9(2):311-8. PubMed ID: 19107290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High throughput multilayer microfluidic particle separation platform using embedded thermoplastic-based micropumping.
    Didar TF; Li K; Tabrizian M; Veres T
    Lab Chip; 2013 Jul; 13(13):2615-22. PubMed ID: 23640083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. End-faced waveguide mediated optical propulsion of microspheres and single cells in a microfluidic device.
    Lilge L; Shah D; Charron L
    Lab Chip; 2013 Jul; 13(13):2554-62. PubMed ID: 23411834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible microfluidic devices with three-dimensional interconnected microporous walls for gas and liquid applications.
    Yuen PK; DeRosa ME
    Lab Chip; 2011 Oct; 11(19):3249-55. PubMed ID: 21833418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silica-immobilized enzymes for multi-step synthesis in microfluidic devices.
    Luckarift HR; Ku BS; Dordick JS; Spain JC
    Biotechnol Bioeng; 2007 Oct; 98(3):701-5. PubMed ID: 17415802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A touch-and-go lipid wrapping technique in microfluidic channels for rapid fabrication of multifunctional envelope-type gene delivery nanodevices.
    Kitazoe K; Wang J; Kaji N; Okamoto Y; Tokeshi M; Kogure K; Harashima H; Baba Y
    Lab Chip; 2011 Oct; 11(19):3256-62. PubMed ID: 21829858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of unlabeled particles in the low micrometer size range using light scattering and hydrodynamic 3D focusing in a microfluidic system.
    Zhuang G; Jensen TG; Kutter JP
    Electrophoresis; 2012 Jul; 33(12):1715-22. PubMed ID: 22740459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A SU-8/PDMS hybrid microfluidic device with integrated optical fibers for online monitoring of lactate.
    Wu MH; Cai H; Xu X; Urban JP; Cui ZF; Cui Z
    Biomed Microdevices; 2005 Dec; 7(4):323-9. PubMed ID: 16404510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All-silica nanofluidic devices for DNA-analysis fabricated by imprint of sol-gel silica with silicon stamp.
    Mikkelsen MB; Letailleur AA; Søndergård E; Barthel E; Teisseire J; Marie R; Kristensen A
    Lab Chip; 2012 Jan; 12(2):262-7. PubMed ID: 22081085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of fibrinogen adsorption onto glass microcapillary surfaces by ELISA.
    Salim M; O'Sullivan B; McArthur SL; Wright PC
    Lab Chip; 2007 Jan; 7(1):64-70. PubMed ID: 17180206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of titania-silica core-shell microspheres via a controlled interface reaction in a microfluidic device.
    Lan W; Li S; Xu J; Luo G
    Langmuir; 2011 Nov; 27(21):13242-7. PubMed ID: 21899338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanomolar detection with high sensitivity microfluidic absorption cells manufactured in tinted PMMA for chemical analysis.
    Floquet CF; Sieben VJ; Milani A; Joly EP; Ogilvie IR; Morgan H; Mowlem MC
    Talanta; 2011 Mar; 84(1):235-9. PubMed ID: 21315925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.