These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 23595353)

  • 41. Carbon coated Co-SiC nanocomposite with high-performance microwave absorption.
    Xie S; Guo XN; Jin GQ; Guo XY
    Phys Chem Chem Phys; 2013 Oct; 15(38):16104-10. PubMed ID: 23986025
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electromagnetic and microwave-absorbing properties of magnetic nickel ferrite nanocrystals.
    Zhu W; Wang L; Zhao R; Ren J; Lu G; Wang Y
    Nanoscale; 2011 Jul; 3(7):2862-4. PubMed ID: 21633731
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis of multilayer graphene balls by carbon segregation from nickel nanoparticles.
    Yoon SM; Choi WM; Baik H; Shin HJ; Song I; Kwon MS; Bae JJ; Kim H; Lee YH; Choi JY
    ACS Nano; 2012 Aug; 6(8):6803-11. PubMed ID: 22765296
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preparation and microwave absorbing properties of carbon/cobalt ferromagnetic composites.
    Li W; Qiao X; Zhao H; Wang S; Ren Q
    J Nanosci Nanotechnol; 2013 Feb; 13(2):793-8. PubMed ID: 23646517
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rational Construction of Uniform CoNi-Based Core-Shell Microspheres with Tunable Electromagnetic Wave Absorption Properties.
    Chen N; Jiang JT; Xu CY; Yan SJ; Zhen L
    Sci Rep; 2018 Feb; 8(1):3196. PubMed ID: 29453359
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Magnetic Cu-Ni (core-shell) nanoparticles in a one-pot reaction under microwave irradiation.
    Yamauchi T; Tsukahara Y; Sakata T; Mori H; Yanagida T; Kawai T; Wada Y
    Nanoscale; 2010 Apr; 2(4):515-23. PubMed ID: 20644753
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Protein microarray chip with Ni-Co alloy coated surface.
    Chang YJ; Chang CH
    Biosens Bioelectron; 2010 Mar; 25(7):1748-54. PubMed ID: 20071160
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fabrication of Co(OH)2 coated Pt nanoparticles as an efficient catalyst for chemoselective hydrogenation of halonitrobenzenes.
    Cheng H; Meng X; Wang Q; Ming J; Yu Y; Zhao F
    J Colloid Interface Sci; 2012 Jul; 377(1):322-7. PubMed ID: 22487229
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Preparation and Microwave Absorption Properties of Novel Carbon Nanofiber/Fe3O4 Composites.
    Ren Y; Dai B; Wang GH; Zhang XW; Zhu P; Li SR
    J Nanosci Nanotechnol; 2015 Apr; 15(4):2845-9. PubMed ID: 26353503
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Formation of Au-Pt alloy nanoparticles on a Si substrate by simple dip-coating at room temperature.
    Zhao L; Heinig N; Leung KT
    Langmuir; 2013 Jan; 29(3):927-31. PubMed ID: 23234580
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Magnetic porous CoNi@C derived from bamboo fiber combined with metal-organic-framework for enhanced electromagnetic wave absorption.
    Zhao X; Yan J; Huang Y; Liu X; Ding L; Zong M; Liu P; Li T
    J Colloid Interface Sci; 2021 Aug; 595():78-87. PubMed ID: 33813227
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A highly active and coke-resistant steam reforming catalyst comprising uniform nickel-iron alloy nanoparticles.
    Koike M; Li D; Nakagawa Y; Tomishige K
    ChemSusChem; 2012 Dec; 5(12):2312-4. PubMed ID: 23135797
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ag/AgBr/Co-Ni-NO3 layered double hydroxide nanocomposites with highly adsorptive and photocatalytic properties.
    Fan H; Zhu J; Sun J; Zhang S; Ai S
    Chemistry; 2013 Feb; 19(7):2523-30. PubMed ID: 23280603
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation of FeNi/C composite derived from metal-organic frameworks as high-efficiency microwave absorbers at ultrathin thickness.
    Shu R; Li N; Li X; Sun J
    J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1918-1927. PubMed ID: 34695759
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Flower-like bimetal-organic framework derived composites with tunable structures for high-efficiency electromagnetic wave absorption.
    Zheng J; He W; Hang T; Sun Z; Li Z; Jiang S; Li X; E S; Chen Y
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):261-270. PubMed ID: 35998452
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Excellent Electromagnetic Absorption Capability of Ni/Carbon Based Conductive and Magnetic Foams Synthesized via a Green One Pot Route.
    Zhao HB; Fu ZB; Chen HB; Zhong ML; Wang CY
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1468-77. PubMed ID: 26710881
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The enhanced microwave absorption property of CoFe(2)O(4) nanoparticles coated with a Co(3)Fe(7)-Co nanoshell by thermal reduction.
    Xi L; Wang Z; Zuo Y; Shi X
    Nanotechnology; 2011 Jan; 22(4):045707. PubMed ID: 21169659
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Magnetic CoNi alloy particles embedded N-doped carbon fibers with polypyrrole for excellent electromagnetic wave absorption.
    Ma M; Liao Z; Su X; Zheng Q; Liu Y; Wang Y; Ma Y; Wan F
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2203-2212. PubMed ID: 34782154
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles.
    Sun D; Mazumder V; Metin Ö; Sun S
    ACS Nano; 2011 Aug; 5(8):6458-64. PubMed ID: 21766875
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Magnetic γ-Fe2O3, Fe3O4, and Fe nanoparticles confined within ordered mesoporous carbons as efficient microwave absorbers.
    Wang J; Zhou H; Zhuang J; Liu Q
    Phys Chem Chem Phys; 2015 Feb; 17(5):3802-12. PubMed ID: 25562071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.