These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 23595442)
1. Weak measurement of the Goos-Hänchen shift. Jayaswal G; Mistura G; Merano M Opt Lett; 2013 Apr; 38(8):1232-4. PubMed ID: 23595442 [TBL] [Abstract][Full Text] [Related]
2. Observation of the Goos-Hänchen shift with neutrons. de Haan VO; Plomp J; Rekveldt TM; Kraan WH; van Well AA; Dalgliesh RM; Langridge S Phys Rev Lett; 2010 Jan; 104(1):010401. PubMed ID: 20366352 [TBL] [Abstract][Full Text] [Related]
3. Weak measurement of the composite Goos-Hänchen shift in the critical region. Santana OJ; Carvalho SA; De Leo S; de Araujo LE Opt Lett; 2016 Aug; 41(16):3884-7. PubMed ID: 27519114 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of Goos-Hänchen shift due to a Rydberg state. Asadpour SH; Hamedi HR; Jafari M Appl Opt; 2018 May; 57(15):4013-4019. PubMed ID: 29791374 [TBL] [Abstract][Full Text] [Related]
5. Direct measurement of the composite Goos-Hänchen shift of an optical beam. Santana OJS; de Araujo LEE Opt Lett; 2018 Aug; 43(16):4037-4040. PubMed ID: 30106946 [TBL] [Abstract][Full Text] [Related]
6. Observing angular deviations in light-beam reflection via weak measurements. Jayaswal G; Mistura G; Merano M Opt Lett; 2014 Nov; 39(21):6257-60. PubMed ID: 25361328 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous weak value amplification of angular Goos-Hänchen and Imbert-Fedorov shifts in partial reflection. Goswami S; Pal M; Nandi A; Panigrahi PK; Ghosh N Opt Lett; 2014 Nov; 39(21):6229-32. PubMed ID: 25361321 [TBL] [Abstract][Full Text] [Related]
8. Tunneling-induced giant Goos-Hänchen shift in quantum wells. Yang WX; Liu S; Zhu Z; Ziauddin ; Lee RK Opt Lett; 2015 Jul; 40(13):3133-6. PubMed ID: 26125385 [TBL] [Abstract][Full Text] [Related]
9. Graphene-assisted resonant transmission and enhanced Goos-Hänchen shift in a frustrated total internal reflection configuration. Chen Y; Ban Y; Zhu QB; Chen X Opt Lett; 2016 Oct; 41(19):4468-4471. PubMed ID: 27749857 [TBL] [Abstract][Full Text] [Related]
10. Giant positive and negative Goos-Hänchen shift on dielectric gratings caused by guided mode resonance. Yang R; Zhu W; Li J Opt Express; 2014 Jan; 22(2):2043-50. PubMed ID: 24515213 [TBL] [Abstract][Full Text] [Related]
11. Observation of Goos-Hänchen shifts in metallic reflection. Merano M; Aiello A; 't Hooft GW; van Exter MP; Eliel ER; Woerdman JP Opt Express; 2007 Nov; 15(24):15928-34. PubMed ID: 19550880 [TBL] [Abstract][Full Text] [Related]
12. Nearly three orders of magnitude enhancement of Goos-Hanchen shift by exciting Bloch surface wave. Wan Y; Zheng Z; Kong W; Zhao X; Liu Y; Bian Y; Liu J Opt Express; 2012 Apr; 20(8):8998-9003. PubMed ID: 22513610 [TBL] [Abstract][Full Text] [Related]
13. Optimized weak measurements of Goos-Hänchen and Imbert-Fedorov shifts in partial reflection. Goswami S; Dhara S; Pal M; Nandi A; Panigrahi PK; Ghosh N Opt Express; 2016 Mar; 24(6):6041-51. PubMed ID: 27136798 [TBL] [Abstract][Full Text] [Related]
14. Direct experimental observation of the single reflection optical Goos-Hänchen shift. Schwefel HG; Köhler W; Lu ZH; Fan J; Wang LJ Opt Lett; 2008 Apr; 33(8):794-6. PubMed ID: 18414535 [TBL] [Abstract][Full Text] [Related]
15. Giant Goos-Hänchen effect and Fano resonance at photonic crystal surfaces. Soboleva IV; Moskalenko VV; Fedyanin AA Phys Rev Lett; 2012 Mar; 108(12):123901. PubMed ID: 22540582 [TBL] [Abstract][Full Text] [Related]
16. Goos-Hänchen effect for optical vibrational modes in a semiconductor structure. Villegas D; Arriaga J; de León-Pérez F; Pérez-Álvarez R J Phys Condens Matter; 2017 Mar; 29(12):125301. PubMed ID: 28070021 [TBL] [Abstract][Full Text] [Related]
17. Weak value amplification of an off-resonance Goos-Hänchen shift in a Kretschmann-Raether surface plasmon resonance device. Parks AD; Spence SE Appl Opt; 2015 Jun; 54(18):5872-6. PubMed ID: 26193042 [TBL] [Abstract][Full Text] [Related]
18. Direct measurement of the Goos-Hänchen shift using a scanning quadrant detector and a polarization maintaining fiber. Yallapragada VJ; Mulay GL; Rao CN; Ravishankar AP; Achanta VG Rev Sci Instrum; 2016 Oct; 87(10):103109. PubMed ID: 27802693 [TBL] [Abstract][Full Text] [Related]
19. Experimental observation of a giant Goos-Hänchen shift in graphene using a beam splitter scanning method. Li X; Wang P; Xing F; Chen XD; Liu ZB; Tian JG Opt Lett; 2014 Oct; 39(19):5574-7. PubMed ID: 25360931 [TBL] [Abstract][Full Text] [Related]