These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 23595445)

  • 1. All-optical pulse generation based on gain-induced four-wave mixing in a semiconductor optical amplifier.
    Li F; Helmy AS
    Opt Lett; 2013 Apr; 38(8):1241-3. PubMed ID: 23595445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 40 Gb/s wavelength conversion via four-wave mixing in a quantum-dot semiconductor optical amplifier.
    Meuer C; Schmidt-Langhorst C; Schmeckebier H; Fiol G; Arsenijević D; Schubert C; Bimberg D
    Opt Express; 2011 Feb; 19(4):3788-98. PubMed ID: 21369203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gigahertz to terahertz tunable all-optical single-side-band microwave generation via semiconductor optical amplifier gain engineering.
    Li F; Helmy AS
    Opt Lett; 2013 Nov; 38(22):4542-5. PubMed ID: 24322069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polarization-insensitive wavelength-division-multiplexing optical millimeter wave generation based on copolarized pump four wave mixing in a semiconductor optical amplifier.
    Li Y; Zheng Z; Chen L; Wen S; Fan D
    Appl Opt; 2009 Jun; 48(16):3008-13. PubMed ID: 19488112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-wave mixing in a broad-area semiconductor amplifier.
    Chi M; Jensen SB; Huignard JP; Petersen PM
    Opt Express; 2006 Dec; 14(25):12373-9. PubMed ID: 19529668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of 113-GHz, 1.8-ps optical pulse trains by Fourier synthesis of four-wave mixing signals obtained from semiconductor optical amplifiers.
    Futami F; Kikuchi K
    Opt Lett; 1997 Dec; 22(24):1873-5. PubMed ID: 18188392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-optical frequency downconversion technique utilizing a four-wave mixing effect in a single semiconductor optical amplifier for wavelength division multiplexing radio-over-fiber applications.
    Kim HJ; Song JI
    Opt Express; 2012 Mar; 20(7):8047-54. PubMed ID: 22453476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broad-band optical parametric gain on a silicon photonic chip.
    Foster MA; Turner AC; Sharping JE; Schmidt BS; Lipson M; Gaeta AL
    Nature; 2006 Jun; 441(7096):960-3. PubMed ID: 16791190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Injection locking for stable all-optical pulse generation via gain-induced FWM.
    Li F; Helmy AS
    Opt Lett; 2014 Aug; 39(15):4408-11. PubMed ID: 25078189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonic generation of ultrawideband signals based on frequency-dependent gain saturation in a reflective semiconductor optical amplifier.
    Chen G; Pan S
    Opt Lett; 2012 Oct; 37(20):4251-3. PubMed ID: 23073427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expansion and phase correlation of a wavelength tunable gain-switched optical frequency comb.
    Lakshmijayasimha PD; Kaszubowska-Anandarajah A; Martin EP; Landais P; Anandarajah PM
    Opt Express; 2019 Jun; 27(12):16560-16570. PubMed ID: 31252880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fourier synthesis of 9.6-GHz optical-pulse trains by phase locking of three continuous-wave semiconductor lasers.
    Hyodo M; Onodera N; Abedin KS
    Opt Lett; 1999 Mar; 24(5):303-5. PubMed ID: 18071487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of 120-fs laser pulses at 1-GHz repetition rate derived from continuous wave laser diode.
    Ishizawa A; Nishikawa T; Mizutori A; Takara H; Nakano H; Sogawa T; Takada A; Koga M
    Opt Express; 2011 Nov; 19(23):22402-9. PubMed ID: 22109116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photonic generation of ultra-wideband doublet pulse using a semiconductor-optical-amplifier based polarization-diversified loop.
    Luo B; Dong J; Yu Y; Yang T; Zhang X
    Opt Lett; 2012 Jun; 37(12):2217-9. PubMed ID: 22739860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic chirp control of all-optical format-converted pulsed data from a multi-wavelength inverse-optical-comb injected semiconductor optical amplifier.
    Lin GR; Pan CL; Yu KC
    Opt Express; 2007 Oct; 15(20):13330-9. PubMed ID: 19550603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proposal for all-optical generation of multiple-frequency millimeter-wave signals for RoF system with multiple base stations using FWM in SOA.
    Zhang C; Wang L; Qiu K
    Opt Express; 2011 Jul; 19(15):13957-62. PubMed ID: 21934756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All-optical frequency upconversion of a quasi optical single sideband signal utilizing a nonlinear semiconductor optical amplifier for radio-over-fiber applications.
    Park M; Song JI
    Opt Express; 2011 Nov; 19(24):24499-506. PubMed ID: 22109476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-wavelength generation by self-seeded four-wave mixing.
    Cholan NA; Al-Mansoori MH; Noor AS; Ismail A; Mahdi MA
    Opt Express; 2013 Mar; 21(5):6131-8. PubMed ID: 23482181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bit rate and pulse width dependence of four-wave mixing of short optical pulses in semiconductor optical amplifiers.
    Diez S; Mecozzi A; Mørk J
    Opt Lett; 1999 Dec; 24(23):1675-7. PubMed ID: 18079899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time- and wavelength-interleaved optical pulse train generation based on dispersion spreading and sectional compression.
    Lam HQ; Lee KE; Lim PH
    Opt Lett; 2012 Jun; 37(12):2349-51. PubMed ID: 22739904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.