These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 23595448)

  • 1. Sensing combustion intermediates by femtosecond filament excitation.
    Li HL; Xu HL; Yang BS; Chen QD; Zhang T; Sun HB
    Opt Lett; 2013 Apr; 38(8):1250-2. PubMed ID: 23595448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous identification of multi-combustion-intermediates of alkanol-air flames by femtosecond filament excitation for combustion sensing.
    Li H; Chu W; Xu H; Cheng Y; Chin SL; Yamanouchi K; Sun HB
    Sci Rep; 2016 Jun; 6():27340. PubMed ID: 27250021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence emission induced by the femtosecond filament transmitting through the butane/air flame.
    Li S; Li Y; Shi Z; Sui L; Li H; Li Q; Chen A; Jiang Y; Jin M
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():32-36. PubMed ID: 28787624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Third-harmonic generation and scattering in combustion flames using a femtosecond laser filament.
    Zang HW; Li HL; Su Y; Fu Y; Hou MY; Baltuška A; Yamanouchi K; Xu H
    Opt Lett; 2018 Feb; 43(3):615-618. PubMed ID: 29400854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical power and clamping intensity inside a filament in a flame.
    Li H; Chu W; Zang H; Xu H; Cheng Y; Chin SL
    Opt Express; 2016 Feb; 24(4):3424-31. PubMed ID: 26907001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser-induced fluorescence detection of hydroxyl (OH) radical by femtosecond excitation.
    Stauffer HU; Kulatilaka WD; Gord JR; Roy S
    Opt Lett; 2011 May; 36(10):1776-8. PubMed ID: 21593887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensing of halocarbons using femtosecond laser-induced fluorescence.
    Gravel JF; Luo Q; Boudreau D; Tang XP; Chin SL
    Anal Chem; 2004 Aug; 76(16):4799-805. PubMed ID: 15307791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time resolved laser induced fluorescence of the NH radical in low pressure N(2)O flames.
    Copeland RA; Wise ML; Rensberger KJ; Crosley DR
    Appl Opt; 1989 Aug; 28(15):3199-205. PubMed ID: 20555670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photodissociation dynamics of nitromethane at 226 and 271 nm at both nanosecond and femtosecond time scales.
    Guo YQ; Bhattacharya A; Bernstein ER
    J Phys Chem A; 2009 Jan; 113(1):85-96. PubMed ID: 19118481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of fuel dissociation and propargyl + allyl association for the formation of benzene in a fuel-rich 1-hexene flame.
    Hansen N; Li W; Law ME; Kasper T; Westmoreland PR; Yang B; Cool TA; Lucassen A
    Phys Chem Chem Phys; 2010 Oct; 12(38):12112-22. PubMed ID: 20820554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative femtosecond, two-photon laser-induced fluorescence of atomic oxygen in high-pressure flames.
    Rahman KA; Athmanathan V; Slipchenko MN; Roy S; Gord JR; Zhang Z; Meyer TR
    Appl Opt; 2019 Mar; 58(8):1984-1990. PubMed ID: 30874065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Femtosecond laser activation and sensing of hydroxyl for velocimetry in reacting flows.
    Fisher JM; Brown AD; Lauriola DK; Slipchenko MN; Meyer TR
    Appl Opt; 2020 Dec; 59(34):10853-10861. PubMed ID: 33361906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative laser diagnostic and modeling study of C2 and CH chemistry in combustion.
    Köhler M; Brockhinke A; Braun-Unkhoff M; Kohse-Höinghaus K
    J Phys Chem A; 2010 Apr; 114(14):4719-34. PubMed ID: 20136115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a two-line OH-laser-induced fluorescence thermometry diagnostics strategy for gas-phase temperature measurements in engines.
    Devillers R; Bruneaux G; Schulz C
    Appl Opt; 2008 Nov; 47(31):5871-85. PubMed ID: 19122729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser in situ monitoring of combustion processes.
    Arnold A; Becker H; Hemberger R; Hentschel W; Ketterle W; Kollner M; Meienburg W; Monkhouse P; Neckel H; Schafer M; Schindler KP; Sick V; Suntz R; Wolfrum J
    Appl Opt; 1990 Nov; 29(33):4860-72. PubMed ID: 20577480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femtosecond laser-induced plasma spectroscopy for combustion diagnostics in premixed ammonia/air flames.
    Zhang D; Gao Q; Li B; Liu J; Tian Y; Li Z
    Appl Opt; 2019 Oct; 58(28):7810-7816. PubMed ID: 31674464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualization of CN by the use of planar laser-induced fluorescence in a cross section of an unseeded turbulent CH(4)-air flame.
    Hirano A; Tsujishita M
    Appl Opt; 1994 Nov; 33(33):7777-80. PubMed ID: 20962989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid laser-wavelength modulation spectroscopy used as a fast temperature measurement technique in hydrocarbon combustion.
    Rea EC; Hanson RK
    Appl Opt; 1988 Nov; 27(21):4454-64. PubMed ID: 20539592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple method of measuring laser peak intensity inside femtosecond laser filament in air.
    Xu S; Sun X; Zeng B; Chu W; Zhao J; Liu W; Cheng Y; Xu Z; Chin SL
    Opt Express; 2012 Jan; 20(1):299-307. PubMed ID: 22274353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Line Raman, Rayleigh, and laser-induced predissociation fluorescence technique for combustion with a tunable KrF excimer laser.
    Mansour MS; Chen YC
    Appl Opt; 1996 Jul; 35(21):4252-60. PubMed ID: 21102834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.