These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 23595677)

  • 1. Cobalt and corrinoid transport and biochemistry.
    Cracan V; Banerjee R
    Met Ions Life Sci; 2013; 12():333-74. PubMed ID: 23595677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic and computational studies of Co2+corrinoids: spectral and electronic properties of the biologically relevant base-on and base-off forms of Co2+cobalamin.
    Stich TA; Buan NR; Brunold TC
    J Am Chem Soc; 2004 Aug; 126(31):9735-49. PubMed ID: 15291577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic characterization of active-site variants of the PduO-type ATP:corrinoid adenosyltransferase from Lactobacillus reuteri: insights into the mechanism of four-coordinate Co(II)corrinoid formation.
    Park K; Mera PE; Escalante-Semerena JC; Brunold TC
    Inorg Chem; 2012 Apr; 51(8):4482-94. PubMed ID: 22480351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the [4Fe-4S] cluster in reductive activation of the cobalt center of the corrinoid iron-sulfur protein from Clostridium thermoaceticum during acetate biosynthesis.
    Menon S; Ragsdale SW
    Biochemistry; 1998 Apr; 37(16):5689-98. PubMed ID: 9548955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Total Synthesis, Structure, and Biological Activity of Adenosylrhodibalamin, the Non-Natural Rhodium Homologue of Coenzyme B12.
    Widner FJ; Lawrence AD; Deery E; Heldt D; Frank S; Gruber K; Wurst K; Warren MJ; Kräutler B
    Angew Chem Int Ed Engl; 2016 Sep; 55(37):11281-6. PubMed ID: 27355790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the catalysis of carbon-cobalt bond homolysis by ribonucleoside triphosphate reductase: evidence for concerted carbon-cobalt bond homolysis and thiyl radical formation.
    Licht SS; Booker S; Stubbe J
    Biochemistry; 1999 Jan; 38(4):1221-33. PubMed ID: 9930982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organometallic chemistry of b(12) coenzymes.
    Kräutler B
    Met Ions Life Sci; 2009; 6():1-51. PubMed ID: 20877791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The inorganic chemistry of the cobalt corrinoids - an update.
    Marques HM
    J Inorg Biochem; 2023 May; 242():112154. PubMed ID: 36871417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox Potentials of Cobalt Corrinoids with Axial Ligands Correlate with Heterolytic Co-C Bond Dissociation Energies.
    Morita Y; Oohora K; Sawada A; Kamachi T; Yoshizawa K; Hayashi T
    Inorg Chem; 2017 Feb; 56(4):1950-1955. PubMed ID: 28165219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method for the efficient adenosylation of corrinoids.
    Costa FG; Villa EA; Escalante-Semerena JC
    Methods Enzymol; 2022; 668():87-108. PubMed ID: 35589203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-based perspectives on B12-dependent enzymes.
    Ludwig ML; Matthews RG
    Annu Rev Biochem; 1997; 66():269-313. PubMed ID: 9242908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the reactions catalyzed by coenzyme B12-dependent enzymes.
    Sandala GM; Smith DM; Radom L
    Acc Chem Res; 2010 May; 43(5):642-51. PubMed ID: 20136160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The inhibition of corrinoid-catalyzed oxidation of mercaptoethanol by methyl iodide: mechanistic implications.
    Jacobsen DW; Pezacka EH; Brown KL
    J Inorg Biochem; 1993 Apr; 50(1):47-63. PubMed ID: 8473883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Hydrogenobyric Acid Structure Reveals the Corrin Ligand as an Entatic State Module Empowering B
    Kieninger C; Deery E; Lawrence AD; Podewitz M; Wurst K; Nemoto-Smith E; Widner FJ; Baker JA; Jockusch S; Kreutz CR; Liedl KR; Gruber K; Warren MJ; Kräutler B
    Angew Chem Int Ed Engl; 2019 Jul; 58(31):10756-10760. PubMed ID: 31115943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic and computational studies of the ATP:corrinoid adenosyltransferase (CobA) from Salmonella enterica: insights into the mechanism of adenosylcobalamin biosynthesis.
    Stich TA; Buan NR; Escalante-Semerena JC; Brunold TC
    J Am Chem Soc; 2005 Jun; 127(24):8710-9. PubMed ID: 15954777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemistry of B12-cofactors in human metabolism.
    Kräutler B
    Subcell Biochem; 2012; 56():323-46. PubMed ID: 22116707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation and study of corrinoid cobalt-ligand isomers by high-performance liquid chromatography.
    Ford SH; Nichols A; Gallery JM
    J Chromatogr; 1991 Jan; 536(1-2):185-91. PubMed ID: 2050764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diastereomeric Control in the Formation of Carbon-Cobalt Bonds in Organocobalt Corrinoids: Reactions of Cobalt(II) Corrinoids with Organic Hydroperoxides(1).
    Brown KL; Zhao D; Cheng S; Zou X
    Inorg Chem; 1997 Apr; 36(9):1764-1771. PubMed ID: 11669778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cobalt proteins.
    Kobayashi M; Shimizu S
    Eur J Biochem; 1999 Apr; 261(1):1-9. PubMed ID: 10103026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for adenosylcobalamin activation in AdoCbl-dependent ribonucleotide reductases.
    Larsson KM; Logan DT; Nordlund P
    ACS Chem Biol; 2010 Oct; 5(10):933-42. PubMed ID: 20672854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.