These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 23595768)
1. Uptake and depuration of pharmaceuticals in reclaimed water by mosquito fish (Gambusia holbrooki): a worst-case, multiple-exposure scenario. Wang J; Gardinali PR Environ Toxicol Chem; 2013 Aug; 32(8):1752-8. PubMed ID: 23595768 [TBL] [Abstract][Full Text] [Related]
2. Analysis of selected pharmaceuticals in fish and the fresh water bodies directly affected by reclaimed water using liquid chromatography-tandem mass spectrometry. Wang J; Gardinali PR Anal Bioanal Chem; 2012 Nov; 404(9):2711-20. PubMed ID: 22678759 [TBL] [Abstract][Full Text] [Related]
3. Uptake from water, biotransformation, and biliary excretion of pharmaceuticals by rainbow trout. Lahti M; Brozinski JM; Jylhä A; Kronberg L; Oikari A Environ Toxicol Chem; 2011 Jun; 30(6):1403-11. PubMed ID: 21337612 [TBL] [Abstract][Full Text] [Related]
4. Influence of salinity and pH on bioconcentration of ionizable pharmaceuticals by the gulf killifish, Fundulus grandis. Scott WC; Haddad SP; Saari GN; Chambliss CK; Conkle JL; Matson CW; Brooks BW Chemosphere; 2019 Aug; 229():434-442. PubMed ID: 31082711 [TBL] [Abstract][Full Text] [Related]
5. Bioconcentration and depuration of endosulfan sulfate in mosquito fish (Gambusia affinis). Hoang TC; Rand GM; Gardinali PR; Castro J Chemosphere; 2011 Jul; 84(5):538-43. PubMed ID: 21550631 [TBL] [Abstract][Full Text] [Related]
6. Periphyton, bivalves and fish differentially accumulate select pharmaceuticals in effluent-dependent stream mesocosms. Burket SR; Wright MV; Baker LF; Chambliss CK; King RS; Matson CW; Brooks BW Sci Total Environ; 2020 Nov; 745():140882. PubMed ID: 32726693 [TBL] [Abstract][Full Text] [Related]
7. Uptake and depuration of pharmaceuticals in aquatic invertebrates. Meredith-Williams M; Carter LJ; Fussell R; Raffaelli D; Ashauer R; Boxall AB Environ Pollut; 2012 Jun; 165():250-8. PubMed ID: 22226124 [TBL] [Abstract][Full Text] [Related]
8. Exposure and food web transfer of pharmaceuticals in ospreys (Pandion haliaetus): Predictive model and empirical data. Lazarus RS; Rattner BA; Brooks BW; Du B; McGowan PC; Blazer VS; Ottinger MA Integr Environ Assess Manag; 2015 Jan; 11(1):118-29. PubMed ID: 25088283 [TBL] [Abstract][Full Text] [Related]
9. Enhanced pharmaceutical removal from water in a three step bio-ozone-bio process. de Wilt A; van Gijn K; Verhoek T; Vergnes A; Hoek M; Rijnaarts H; Langenhoff A Water Res; 2018 Jul; 138():97-105. PubMed ID: 29574201 [TBL] [Abstract][Full Text] [Related]
10. Human pharmaceuticals in wastewaters from urbanized areas of Argentina. Elorriaga Y; Marino DJ; Carriquiriborde P; Ronco AE Bull Environ Contam Toxicol; 2013 Apr; 90(4):397-400. PubMed ID: 23229304 [TBL] [Abstract][Full Text] [Related]
11. Characteristics of removal of waste-water marking pharmaceuticals with typical hydrophytes in the urban rivers. Zhou H; Liu X; Chen X; Ying T; Ying Z Sci Total Environ; 2018 Sep; 636():1291-1302. PubMed ID: 29913591 [TBL] [Abstract][Full Text] [Related]
12. Microbial degradation of pharmaceuticals in estuarine and coastal seawater. Benotti MJ; Brownawell BJ Environ Pollut; 2009 Mar; 157(3):994-1002. PubMed ID: 19038482 [TBL] [Abstract][Full Text] [Related]
13. Batch versus continuous feeding strategies for pharmaceutical removal by subsurface flow constructed wetland. Zhang DQ; Gersberg RM; Zhu J; Hua T; Jinadasa KB; Tan SK Environ Pollut; 2012 Aug; 167():124-31. PubMed ID: 22564400 [TBL] [Abstract][Full Text] [Related]
14. Occurrence and bioaccumulation of pharmaceuticals in a fish species inhabiting the Suquía River basin (Córdoba, Argentina). Valdés ME; Amé MV; Bistoni Mde L; Wunderlin DA Sci Total Environ; 2014 Feb; 472():389-96. PubMed ID: 24295755 [TBL] [Abstract][Full Text] [Related]
15. Bioaccumulation and toxicity of copper in outdoor freshwater microcosms. Hoang TC; Pryor RL; Rand GM; Frakes RA Ecotoxicol Environ Saf; 2011 May; 74(4):1011-20. PubMed ID: 21345490 [TBL] [Abstract][Full Text] [Related]
16. Bioaccumulation and bioconcentration of carbamazepine and other pharmaceuticals in fish under field and controlled laboratory experiments. Evidences of carbamazepine metabolization by fish. Valdés ME; Huerta B; Wunderlin DA; Bistoni MA; Barceló D; Rodriguez-Mozaz S Sci Total Environ; 2016 Jul; 557-558():58-67. PubMed ID: 26994794 [TBL] [Abstract][Full Text] [Related]
17. Bioconcentration of ibuprofen in fathead minnow (Pimephales promelas) and channel catfish (Ictalurus punctatus). Nallani GC; Paulos PM; Constantine LA; Venables BJ; Huggett DB Chemosphere; 2011 Sep; 84(10):1371-7. PubMed ID: 21658739 [TBL] [Abstract][Full Text] [Related]
18. Soil persistence and fate of carbamazepine, lincomycin, caffeine, and ibuprofen from wastewater reuse. Williams CF; McLain JE J Environ Qual; 2012; 41(5):1473-80. PubMed ID: 23099938 [TBL] [Abstract][Full Text] [Related]
19. Occurrence and suitability of pharmaceuticals and personal care products as molecular markers for raw wastewater contamination in surface water and groundwater. Tran NH; Li J; Hu J; Ong SL Environ Sci Pollut Res Int; 2014 Mar; 21(6):4727-40. PubMed ID: 24352549 [TBL] [Abstract][Full Text] [Related]
20. Biological removal of pharmaceuticals by Navicula sp. and biotransformation of bezafibrate. Ding T; Wang S; Yang B; Li J Chemosphere; 2020 Feb; 240():124949. PubMed ID: 31568949 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]