These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 235959)

  • 1. Sulfhydryl groups in hemoglobin. A new molecular probe at the alpha1 beta 1 interface studied by Fourier transform infrared spectroscopy.
    Bare GH; Alben JO; Bromberg PA
    Biochemistry; 1975 Apr; 14(8):1578-83. PubMed ID: 235959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational sensitivity of beta-93 cysteine SH to ligation of hemoglobin observed by FT-IR spectroscopy.
    Moh PP; Fiamingo FG; Alben JO
    Biochemistry; 1987 Sep; 26(19):6243-9. PubMed ID: 3689772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fourier transform infrared spectroscopic study of molecular interactions in hemoglobin.
    Alben JO; Bare GH
    Appl Opt; 1978 Sep; 17(18):2985-90. PubMed ID: 20203908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrared analysis of ligand- and oxidation-induced conformational changes in hemoglobins and myoglobins.
    Dong A; Huang P; Caughey B; Caughey WS
    Arch Biochem Biophys; 1995 Feb; 316(2):893-8. PubMed ID: 7864648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fourier transform infrared absorption studies on the sulfhydryl groups in heavy meromyosin.
    Nakanishi M; Yamada T; Shimizu H; Tsuboi M
    Biochim Biophys Acta; 1981 Nov; 671(1):99-103. PubMed ID: 7030404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron-carbonyl bond geometries of carboxymyoglobin and carboxyhemoglobin in solution determined by picosecond time-resolved infrared spectroscopy.
    Moore JN; Hansen PA; Hochstrasser RM
    Proc Natl Acad Sci U S A; 1988 Jul; 85(14):5062-6. PubMed ID: 3393531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear magnetic resonance studies of hemoglobin: functional state correlations and isotopic enrichment strategies.
    Morrow JS; Gurd FR
    CRC Crit Rev Biochem; 1975 Dec; 3(3):221-87. PubMed ID: 3388
    [No Abstract]   [Full Text] [Related]  

  • 8. Ligand-dependent heme-protein interactions in human hemoglobin studied by Fourier transform infrared spectroscopy. Effects of quaternary structure on alpha chain tertiary structure measured at the alpha-104(G11) cysteine-SH.
    Alben JO; Bare GH
    J Biol Chem; 1980 May; 255(9):3892-7. PubMed ID: 7372657
    [No Abstract]   [Full Text] [Related]  

  • 9. Ligand-linked changes at the subunit interfaces in Scapharca hemoglobins probed through the sulfhydryl infrared absorption.
    Guarrera L; Colotti G; Chiancone E; Boffi A
    Biochemistry; 1999 Aug; 38(31):10079-83. PubMed ID: 10433715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent denaturation of proteins as observed by resolution-enhanced Fourier transform infrared spectroscopy.
    Purcell JM; Susi H
    J Biochem Biophys Methods; 1984 Jul; 9(3):193-9. PubMed ID: 6470400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulphydryl groups as a new molecular probe at the alpha1 beta1 interface in haemoglobin using Fourier transform infrared spectroscopy.
    Alben JO; Bare GH; Bromberg PA
    Nature; 1974 Dec; 252(5485):736-8. PubMed ID: 4437632
    [No Abstract]   [Full Text] [Related]  

  • 12. Alkali cation effect on carbonyl-hemoglobin's and -myoglobin's conformer populations when exposed to freeze-concentration of their phosphate-buffered aqueous solutions.
    Astl G; Mayer E
    Biochim Biophys Acta; 1991 Oct; 1080(2):155-9. PubMed ID: 1932091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implication of the alpha 1 beta 1 interface in the hemoglobin affinity changes. A comparative study between normal and San Diego fully ligated hemoglobins.
    el Antri S; Zentz C; Alpert B
    Eur J Biochem; 1989 Jan; 179(1):165-8. PubMed ID: 2917557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infrared evidence for the mode of binding of oxygen to iron of myoglobin from heart muscle.
    Maxwell JC; Volpe JA; Barlow CH; Caughey WS
    Biochem Biophys Res Commun; 1974 May; 58(1):166-71. PubMed ID: 4831065
    [No Abstract]   [Full Text] [Related]  

  • 15. Interaction between bound cupric ion and spin-labeled cysteine beta-93 in human and horse hemoglobins.
    Antholine WE; Taketa F; Wang JT; Manoharan PT; Rifkind JM
    J Inorg Biochem; 1985 Oct; 25(2):95-108. PubMed ID: 2997391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein structure by Fourier transform infrared spectroscopy: second derivative spectra.
    Susi H; Byler DM
    Biochem Biophys Res Commun; 1983 Aug; 115(1):391-7. PubMed ID: 6615537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural heterogeneity of the Fe(2+)-N epsilon (HisF8) bond in various hemoglobin and myoglobin derivatives probed by the Raman-active iron histidine stretching mode.
    Gilch H; Schweitzer-Stenner R; Dreybrodt W
    Biophys J; 1993 Oct; 65(4):1470-85. PubMed ID: 8274641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2D-IR spectroscopy of the sulfhydryl band of cysteines in the hydrophobic core of proteins.
    KoziƄski M; Garrett-Roe S; Hamm P
    J Phys Chem B; 2008 Jun; 112(25):7645-50. PubMed ID: 18512974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time dependence of near-infrared spectra of photodissociated hemoglobin and myoglobin.
    Sassaroli M; Rousseau DL
    Biochemistry; 1987 Jun; 26(11):3092-8. PubMed ID: 3607013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure changes in hemoglobin upon deletion of C-terminal residues, monitored by resonance Raman spectroscopy.
    Wang D; Spiro TG
    Biochemistry; 1998 Jul; 37(28):9940-51. PubMed ID: 9665699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.