BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 23595953)

  • 1. Biological characterization of oxidized hyaluronic acid/resveratrol hydrogel for cartilage tissue engineering.
    Sheu SY; Chen WS; Sun JS; Lin FH; Wu T
    J Biomed Mater Res A; 2013 Dec; 101(12):3457-66. PubMed ID: 23595953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Injectable oxidized hyaluronic acid/adipic acid dihydrazide hydrogel for nucleus pulposus regeneration.
    Su WY; Chen YC; Lin FH
    Acta Biomater; 2010 Aug; 6(8):3044-55. PubMed ID: 20193782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chitosan scaffolds containing hyaluronic acid for cartilage tissue engineering.
    Correia CR; Moreira-Teixeira LS; Moroni L; Reis RL; van Blitterswijk CA; Karperien M; Mano JF
    Tissue Eng Part C Methods; 2011 Jul; 17(7):717-30. PubMed ID: 21517692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment.
    Toh WS; Lim TC; Kurisawa M; Spector M
    Biomaterials; 2012 May; 33(15):3835-45. PubMed ID: 22369963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration.
    Balakrishnan B; Joshi N; Jayakrishnan A; Banerjee R
    Acta Biomater; 2014 Aug; 10(8):3650-63. PubMed ID: 24811827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro expression of cartilage-specific markers by chondrocytes on a biocompatible hydrogel: implications for engineering cartilage tissue.
    Risbud M; Ringe J; Bhonde R; Sittinger M
    Cell Transplant; 2001; 10(8):755-63. PubMed ID: 11814119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ cross-linkable hyaluronan hydrogel enhances chondrogenesis.
    Aulin C; Bergman K; Jensen-Waern M; Hedenqvist P; Hilborn J; Engstrand T
    J Tissue Eng Regen Med; 2011 Aug; 5(8):e188-96. PubMed ID: 21394931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering.
    Yamane S; Iwasaki N; Majima T; Funakoshi T; Masuko T; Harada K; Minami A; Monde K; Nishimura S
    Biomaterials; 2005 Feb; 26(6):611-9. PubMed ID: 15282139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic effect of TGFbeta-3 on chondrogenic differentiation of rabbit chondrocytes in thermo-reversible hydrogel constructs blended with hyaluronic acid by in vivo test.
    Na K; Kim S; Woo DG; Sun BK; Yang HN; Chung HM; Park KH
    J Biotechnol; 2007 Feb; 128(2):412-22. PubMed ID: 17098315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The self-crosslinking smart hyaluronic acid hydrogels as injectable three-dimensional scaffolds for cells culture.
    Bian S; He M; Sui J; Cai H; Sun Y; Liang J; Fan Y; Zhang X
    Colloids Surf B Biointerfaces; 2016 Apr; 140():392-402. PubMed ID: 26780252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue-engineered cartilage using fibrin/hyaluronan composite gel and its in vivo implantation.
    Park SH; Park SR; Chung SI; Pai KS; Min BH
    Artif Organs; 2005 Oct; 29(10):838-45. PubMed ID: 16185347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of cartilage regeneration of chondrocyte encapsulated gellan gum-based hyaluronic acid blended hydrogel.
    Kim WK; Choi JH; Shin ME; Kim JW; Kim PY; Kim N; Song JE; Khang G
    Int J Biol Macromol; 2019 Dec; 141():51-59. PubMed ID: 31442504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of fortified fibrin/hyaluronic acid composite gel as a cell delivery vehicle for chondrocytes.
    Park SH; Cui JH; Park SR; Min BH
    Artif Organs; 2009 Jun; 33(6):439-47. PubMed ID: 19473139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering cartilage tissue interfaces using a natural glycosaminoglycan hydrogel matrix--an in vitro study.
    Remya NS; Nair PD
    Mater Sci Eng C Mater Biol Appl; 2013 Mar; 33(2):575-82. PubMed ID: 25427458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ cross-linkable hydrogel of hyaluronan produced via copper-free click chemistry.
    Takahashi A; Suzuki Y; Suhara T; Omichi K; Shimizu A; Hasegawa K; Kokudo N; Ohta S; Ito T
    Biomacromolecules; 2013 Oct; 14(10):3581-8. PubMed ID: 24004342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of gelatin/hyaluronic acid cryogels for adipose tissue engineering: in vitro and in vivo studies.
    Chang KH; Liao HT; Chen JP
    Acta Biomater; 2013 Nov; 9(11):9012-26. PubMed ID: 23851171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the potential of novel PCL-PPDX biodegradable scaffolds as support materials for cartilage tissue engineering.
    Chaim IA; Sabino MA; Mendt M; Müller AJ; Ajami D
    J Tissue Eng Regen Med; 2012 Apr; 6(4):272-9. PubMed ID: 21548137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and biological investigation of chitosan/hyaluronic acid with silanized-hydroxypropyl methylcellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering.
    Hu M; Yang J; Xu J
    Drug Deliv; 2021 Dec; 28(1):607-619. PubMed ID: 33739203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cartilage regeneration using biodegradable oxidized alginate/hyaluronate hydrogels.
    Park H; Lee KY
    J Biomed Mater Res A; 2014 Dec; 102(12):4519-25. PubMed ID: 24677739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser sintered porous polycaprolacone scaffolds loaded with hyaluronic acid and gelatin-grafted thermoresponsive hydrogel for cartilage tissue engineering.
    Lee MY; Tsai WW; Chen HJ; Chen JP; Chen CH; Yeh WL; An J
    Biomed Mater Eng; 2013; 23(6):533-43. PubMed ID: 24165555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.