These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 23596148)
1. Case Study: an accelerated 8-day monoclonal antibody production process based on high seeding densities. Padawer I; Ling WL; Bai Y Biotechnol Prog; 2013; 29(3):829-32. PubMed ID: 23596148 [TBL] [Abstract][Full Text] [Related]
2. Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality. Yang WC; Lu J; Kwiatkowski C; Yuan H; Kshirsagar R; Ryll T; Huang YM Biotechnol Prog; 2014; 30(3):616-25. PubMed ID: 24574326 [TBL] [Abstract][Full Text] [Related]
3. An empirical modeling platform to evaluate the relative control discrete CHO cell synthetic processes exert over recombinant monoclonal antibody production process titer. McLeod J; O'Callaghan PM; Pybus LP; Wilkinson SJ; Root T; Racher AJ; James DC Biotechnol Bioeng; 2011 Sep; 108(9):2193-204. PubMed ID: 21445882 [TBL] [Abstract][Full Text] [Related]
4. Optimizing capacity utilization by large scale 3000 L perfusion in seed train bioreactors. Pohlscheidt M; Jacobs M; Wolf S; Thiele J; Jockwer A; Gabelsberger J; Jenzsch M; Tebbe H; Burg J Biotechnol Prog; 2013; 29(1):222-9. PubMed ID: 23225663 [TBL] [Abstract][Full Text] [Related]
5. Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality. Meuwly F; Weber U; Ziegler T; Gervais A; Mastrangeli R; Crisci C; Rossi M; Bernard A; von Stockar U; Kadouri A J Biotechnol; 2006 May; 123(1):106-16. PubMed ID: 16324762 [TBL] [Abstract][Full Text] [Related]
6. Fed-batch performance profiles for mAb production using different intensified N - 1 seed strategies are CHO cell-line dependent. Tang Y; Xu J; Xu M; Huang Z; Santos J; He Q; Borys M; Khetan A Biotechnol Prog; 2024; 40(4):e3446. PubMed ID: 38415506 [TBL] [Abstract][Full Text] [Related]
7. Enhanced cell culture performance using inducible anti-apoptotic genes E1B-19K and Aven in the production of a monoclonal antibody with Chinese hamster ovary cells. Figueroa B; Ailor E; Osborne D; Hardwick JM; Reff M; Betenbaugh MJ Biotechnol Bioeng; 2007 Jul; 97(4):877-92. PubMed ID: 17099908 [TBL] [Abstract][Full Text] [Related]
8. [Development and application of perfusion culture producing seed cells in WAVE bioreactor]. Yang J; Sui L Sheng Wu Gong Cheng Xue Bao; 2012 Mar; 28(3):358-67. PubMed ID: 22712394 [TBL] [Abstract][Full Text] [Related]
9. Development of a new bioprocess scheme using frozen seed train intermediates to initiate CHO cell culture manufacturing campaigns. Seth G; Hamilton RW; Stapp TR; Zheng L; Meier A; Petty K; Leung S; Chary S Biotechnol Bioeng; 2013 May; 110(5):1376-85. PubMed ID: 23242970 [TBL] [Abstract][Full Text] [Related]
11. Perfusion culture of hybridoma cells for hyperproduction of IgG(2a) monoclonal antibody in a wave bioreactor-perfusion culture system. Tang YJ; Ohashi R; Hamel JF Biotechnol Prog; 2007; 23(1):255-64. PubMed ID: 17269696 [TBL] [Abstract][Full Text] [Related]
12. Process intensification in fed-batch production bioreactors using non-perfusion seed cultures. Yongky A; Xu J; Tian J; Oliveira C; Zhao J; McFarland K; Borys MC; Li ZJ MAbs; 2019; 11(8):1502-1514. PubMed ID: 31379298 [TBL] [Abstract][Full Text] [Related]
13. Very high density of Chinese hamster ovary cells in perfusion by alternating tangential flow or tangential flow filtration in WAVE Bioreactor™-part II: Applications for antibody production and cryopreservation. Clincke MF; Mölleryd C; Samani PK; Lindskog E; Fäldt E; Walsh K; Chotteau V Biotechnol Prog; 2013; 29(3):768-77. PubMed ID: 23436783 [TBL] [Abstract][Full Text] [Related]
14. Modulation and modeling of monoclonal antibody N-linked glycosylation in mammalian cell perfusion reactors. Karst DJ; Scibona E; Serra E; Bielser JM; Souquet J; Stettler M; Broly H; Soos M; Morbidelli M; Villiger TK Biotechnol Bioeng; 2017 Sep; 114(9):1978-1990. PubMed ID: 28409838 [TBL] [Abstract][Full Text] [Related]
15. Development of at-line assay to monitor charge variants of MAbs during production. St Amand MM; Ogunnaike BA; Robinson AS Biotechnol Prog; 2014; 30(1):249-55. PubMed ID: 24382831 [TBL] [Abstract][Full Text] [Related]
16. Defining process design space for monoclonal antibody cell culture. Abu-Absi SF; Yang L; Thompson P; Jiang C; Kandula S; Schilling B; Shukla AA Biotechnol Bioeng; 2010 Aug; 106(6):894-905. PubMed ID: 20589669 [TBL] [Abstract][Full Text] [Related]
17. Application of a cell-once-through perfusion strategy for production of recombinant antibody from rCHO cells in a Centritech Lab II centrifuge system. Kim BJ; Chang HN; Oh DJ Biotechnol Prog; 2007; 23(5):1186-97. PubMed ID: 17691812 [TBL] [Abstract][Full Text] [Related]
18. Process performance and product quality in an integrated continuous antibody production process. Karst DJ; Steinebach F; Soos M; Morbidelli M Biotechnol Bioeng; 2017 Feb; 114(2):298-307. PubMed ID: 27497430 [TBL] [Abstract][Full Text] [Related]
19. Efficiency improvement of an antibody production process by increasing the inoculum density. Hecht V; Duvar S; Ziehr H; Burg J; Jockwer A Biotechnol Prog; 2014; 30(3):607-15. PubMed ID: 24574274 [TBL] [Abstract][Full Text] [Related]
20. WAVE-based intensified perfusion cell culture for fast process development. Lang Z; Yan S; Xiong Q; Chen G Biotechnol Lett; 2023 Sep; 45(9):1117-1131. PubMed ID: 37382759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]