BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 23596449)

  • 21. Genome-Wide Identification of Histone Modification Gene Families in the Model Legume
    Lopez L; Perrella G; Calderini O; Porceddu A; Panara F
    Plants (Basel); 2022 Jan; 11(3):. PubMed ID: 35161303
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The mitochondrial complexome of Arabidopsis thaliana.
    Senkler J; Senkler M; Eubel H; Hildebrandt T; Lengwenus C; Schertl P; Schwarzländer M; Wagner S; Wittig I; Braun HP
    Plant J; 2017 Mar; 89(6):1079-1092. PubMed ID: 27943495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The presence of nodules on legume root systems can alter phenotypic plasticity in response to internal nitrogen independent of nitrogen fixation.
    Goh CH; Nicotra AB; Mathesius U
    Plant Cell Environ; 2016 Apr; 39(4):883-96. PubMed ID: 26523414
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Medicago truncatula genotypes Jemalong A17 and R108 show contrasting variations under drought stress.
    Luo SS; Sun YN; Zhou X; Zhu T; Zhu LS; Arfan M; Zou LJ; Lin HH
    Plant Physiol Biochem; 2016 Dec; 109():190-198. PubMed ID: 27721134
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overexpression of the arginine decarboxylase gene promotes the symbiotic interaction Medicago truncatula-Sinorhizobium meliloti and induces the accumulation of proline and spermine in nodules under salt stress conditions.
    Hidalgo-Castellanos J; Duque AS; Burgueño A; Herrera-Cervera JA; Fevereiro P; López-Gómez M
    J Plant Physiol; 2019 Oct; 241():153034. PubMed ID: 31493718
    [TBL] [Abstract][Full Text] [Related]  

  • 26. LeGOO: An Expertized Knowledge Database for the Model Legume Medicago truncatula.
    Carrï Re SB; Verdenaud M; Gough C; Gouzy JRM; Gamas P
    Plant Cell Physiol; 2020 Jan; 61(1):203-211. PubMed ID: 31605615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Defining the mitochondrial proteomes from five rat organs in a physiologically significant context using 2D blue-native/SDS-PAGE.
    Reifschneider NH; Goto S; Nakamoto H; Takahashi R; Sugawa M; Dencher NA; Krause F
    J Proteome Res; 2006 May; 5(5):1117-32. PubMed ID: 16674101
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The model legume Medicago truncatula A17 is poorly matched for N2 fixation with the sequenced microsymbiont Sinorhizobium meliloti 1021.
    Terpolilli JJ; O'Hara GW; Tiwari RP; Dilworth MJ; Howieson JG
    New Phytol; 2008; 179(1):62-66. PubMed ID: 18422896
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plant Nitrate Reductases Regulate Nitric Oxide Production and Nitrogen-Fixing Metabolism During the
    Berger A; Boscari A; Horta Araújo N; Maucourt M; Hanchi M; Bernillon S; Rolin D; Puppo A; Brouquisse R
    Front Plant Sci; 2020; 11():1313. PubMed ID: 33013954
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D Gel Map of Arabidopsis Complex I.
    Peters K; Belt K; Braun HP
    Front Plant Sci; 2013; 4():153. PubMed ID: 23761796
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of the Arabidopsis thaliana immune receptor EFR in Medicago truncatula reduces infection by a root pathogenic bacterium, but not nitrogen-fixing rhizobial symbiosis.
    Pfeilmeier S; George J; Morel A; Roy S; Smoker M; Stransfeld L; Downie JA; Peeters N; Malone JG; Zipfel C
    Plant Biotechnol J; 2019 Mar; 17(3):569-579. PubMed ID: 30120864
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Medicago truncatula copper transporter 1 (MtCOPT1) delivers copper for symbiotic nitrogen fixation.
    Senovilla M; Castro-Rodríguez R; Abreu I; Escudero V; Kryvoruchko I; Udvardi MK; Imperial J; González-Guerrero M
    New Phytol; 2018 Apr; 218(2):696-709. PubMed ID: 29349810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Specific Host-Responsive Associations Between Medicago truncatula Accessions and Sinorhizobium Strains.
    Kazmierczak T; Nagymihály M; Lamouche F; Barrière Q; Guefrachi I; Alunni B; Ouadghiri M; Ibijbijen J; Kondorosi É; Mergaert P; Gruber V
    Mol Plant Microbe Interact; 2017 May; 30(5):399-409. PubMed ID: 28437159
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Absolute quantification of Medicago truncatula sucrose synthase isoforms and N-metabolism enzymes in symbiotic root nodules and the detection of novel nodule phosphoproteins by mass spectrometry.
    Wienkoop S; Larrainzar E; Glinski M; González EM; Arrese-Igor C; Weckwerth W
    J Exp Bot; 2008; 59(12):3307-15. PubMed ID: 18772307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential gel electrophoresis (DIGE) to quantitatively monitor early symbiosis- and pathogenesis-induced changes of the Medicago truncatula root proteome.
    Schenkluhn L; Hohnjec N; Niehaus K; Schmitz U; Colditz F
    J Proteomics; 2010 Feb; 73(4):753-68. PubMed ID: 19895911
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Medicago truncatula gene expression atlas web server.
    He J; Benedito VA; Wang M; Murray JD; Zhao PX; Tang Y; Udvardi MK
    BMC Bioinformatics; 2009 Dec; 10():441. PubMed ID: 20028527
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence that the exoH gene of Sinorhizobium meliloti does not appear to influence symbiotic effectiveness with Medicago truncatula 'Jemalong A17'.
    Zribi K; Mhadhbi H; Badri Y; Aouani ME; van Berkum P
    Can J Microbiol; 2010 Dec; 56(12):996-1002. PubMed ID: 21164569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A two-dimensional electrophoresis proteomic reference map and systematic identification of 1367 proteins from a cell suspension culture of the model legume Medicago truncatula.
    Lei Z; Elmer AM; Watson BS; Dixon RA; Mendes PJ; Sumner LW
    Mol Cell Proteomics; 2005 Nov; 4(11):1812-25. PubMed ID: 16048909
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immobilization of the first dimension in 2D blue native/SDS-PAGE allows the relative quantification of membrane proteomes.
    Klepsch M; Schlegel S; Wickström D; Friso G; van Wijk KJ; Persson JO; de Gier JW; Wagner S
    Methods; 2008 Oct; 46(2):48-53. PubMed ID: 18674622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative Proteomic Analysis Reveals Differential Root Proteins in Medicago sativa and Medicago truncatula in Response to Salt Stress.
    Long R; Li M; Zhang T; Kang J; Sun Y; Cong L; Gao Y; Liu F; Yang Q
    Front Plant Sci; 2016; 7():424. PubMed ID: 27066057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.